《菱形》的教案
第1篇:《菱形》的教案
课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
五、例习题分析
例1(补充)已知:如图,四边形abcd是菱形,f是ab上一点,df交ac于e.
求*:∠afd=∠cbe.
*:∵四边形abcd是菱形,
∴cb=cd,ca平分∠bcd.
∴∠bce=∠dce.又ce=ce,
∴△bce≌△cob(sas).
∴∠cbe=∠cde.
∵在菱形abcd中,ab∥cd,∴∠afd=∠fdc
∴∠afd=∠cbe.
例2(教材p108例2)略
六、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.
3.已知菱形abcd的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形abcd中,e、f分别是cb、cd上的点,且be=df.求*:∠aef=∠afe.
七、课后练习
1.菱形abcd中,∠d∶∠a=3∶1,菱形的周长为8cm,求菱形的高.
2.如图,四边形abcd是边长为13cm的菱形,其中对角线bd长10cm,求(1)对角线ac的长度;(2)菱形abcd的面积
第2篇:《菱形》的教案
课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
五、例习题分析
例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求*:∠AFD=∠CBE.
*:∵四边形ABCD是菱形,
∴CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴∠AFD=∠CBE.
例2(教材P108例2)略
六、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求*:∠AEF=∠AFE.
七、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积
第3篇:菱形教案范文
知识结构
重难点分析
本节的重点是菱形的*质和判定定理、菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是非凡的平行四边形,非凡之处就是“有一组邻边相等”,因而就增加了一些非凡的*质和不同于平行四边形的判定方法、菱形的这些*质和判定定理即是平行四边形*质与判定的延续,又是以后要学习的正方形的基础、
本节的难点是菱形*质的灵活应用、由于菱形是非凡的平行四边形,所以它不但具有平行四边形的*质,同时还具有自己独特的*质、假如得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,经常让许多学生手足无措,教师在教学过程中应给予足够重视、
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注重以下问题:
1、菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入、
2、菱形在现实中的实例较多,在讲解菱形的*质和判定时,教师可自行预备或由学生预备一些生活实例来进行判别应用了哪些*质和判定,既增加了学生的参与感又巩固了所学的知识、
3、假如条件答应,教师在讲授这节内容前,可指导学生按照教材148页图433所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的把握更轻松些、
4、在对*质的讲解中,教师可将学生分成若干组,每个学生分别对事先预备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳、
5、由于菱形和菱形的*质定理*实比较简单,教师可引导学生分析思路,由学生来进行具体的*实、
6、在菱形*质应用讲解中,为便于理解把握,教师要注重题目的层次安排、
一、教学目标
1、把握菱形概念,知道菱形与平行四边形的关系、
2、把握菱形的*质、
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力、
4、通过教具的演示培养学生的学习爱好、
5、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透*思想、
6、通过菱形*质的学习,体会菱形的图形美、
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1、教学重点:菱形的*质定理、
2、教学难点:把菱形的*质和直角三角形的知识综合应用、
3、疑点:菱形与矩形的*质的区别、
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论*方法,教师适时点拨
七、教学步骤
复习提问
1、什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2、矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角、
3、矩形的一个角的平分线把较长的边分成、,求矩形的周长、
引入新课
我们已经学习了一种非凡的平行四边形——矩形,其实还有另外的非凡平行四边形,这时可将事先按课本中图4—38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出菱形概念、
讲解新课
1、菱形定义:有一组邻边相等的平行四边形叫做菱形、
讲解这个定义时,要抓住概念的本质,应突出两条:
(1)强调菱形是平行四边形、
(2)一组邻边相等、
2、菱形的*质:
教师强调,菱形既然是非凡的平行四边形,因此它就具有平行四边形的一切*质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些非凡*质、
下面研究菱形的*质:
师:同学们根据菱形的定义结合图形猜一下菱形有什么*质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析)、
生:因为菱形是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的*质可以得到、
菱形*质定理1:菱形的四条边都相等、
由菱形的四条边都相等,根据平行四边形对角线互相平分,可以得到
菱形*质定理2:菱形的对角线互相垂直并且每一条对角线平分一组对角、
引导学生完成定理的规范*实、
师:观察右图,菱形被对角线分成的四个直角三角形有什么关系?
生:全等、
师:它们的底和高和两条对角线有什么关系?
生:分别是两条对角线的一半、
师:假如设菱形的两条对角线分别为、,则菱形的面积是什么?
生:
教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积、
例2已知:如右图,是△的角平分线,交于,交于、
求*:四边形是菱形、
(引导学生用菱形定义来判定、)
例3已知菱形的边长为,,对角线,相交于点,如右图,求这个菱形的对角线长和面积、
(1)按教材的方法求面积、
(2)还可以引导学生求出△一边上的高,即菱形的高,然后用平行四边形的面积公式计算菱形的面积、
总结、扩展
1、小结:(打出投影)(图4)
(1)菱形、平行四边形、四边形的从属关系:
(2)菱形*质:图5
①具有平行四边形的所有*质、
②特有*质:四条边相等;对角线互相垂直,且平分每一组对角、
八、布置作业
教材p158中6、7、8,p196中10
九、板书设计
标题
菱形定义……
菱形*质例2……小结:
*质定理1:……例3…………
*质定理2:……
十、随堂练习
教材p151中1、2、3
补充
1、菱形的两条对角线长分别是3和4,则周长和面积分别是___________、___________、
2、菱形周长为80,一对角线为20,则相邻两角的度数为___________、____________、
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除