七年级数学上册《数据的收集与整理》知识点的归纳整理
第1篇:七年级数学上册《数据的收集与整理》知识点的归纳整理
1.数据的收集
1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式).
2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;(5)展开调查;(6)收集并整理数据;(7)分析数据,得出结论.
2.普查和抽样调查
1)普查:对所有考察对象进行全面调查叫普查
优点:可以直接获得总体情况;
缺点:总体中个体数目较多时,普查的工作量较大.
2)总体:所要考察的对象的全体叫总体
个体:组成总体的每一个考察对象叫做个体
1)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查
优点:调查范围小,节省时间、人力、物力及财力
缺点:没有普查得到的结果准确
样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表*和广泛*.
3.数据的表示
1)扇形统计图
概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.
特点:(1)反映具体问题中的部分与总体的数量关系.
(2)只能得到各部分的百分比,得不到具体数量.
(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
绘制扇形统计图的步骤:计算各部分占总体的百分比
计算各部分对应的扇形的圆心角的度数
画出扇形统计图,表上百分比
写出扇形统计图的名称
2)条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据.
特点:能清楚地表示出每个项目的具体数据.
3)频数直方图
(1)频数:在数据统计中每个对象出现的次数称为频数
(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数.
(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图
(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数.
(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况.
4)折线统计图:用折线的起伏表示数据的增减变化.
4.统计图的选择
条形统计图:清楚地表示每个项目的具体数目
折线统计图:清楚地反映事物的变化情况
扇形统计图:清楚地表示出各部分在总体中所占的百分比
频数直方图:能更清晰、更直观地反映数据的整体状况.
第2篇:五年级数学上册《分数》知识点整理归纳
分数与除法
【知识点】:
理解分数与除法的关系:被除数除数=(除数不为0)。
分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法。
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法。(两种)
把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。
将整数与分母相乘的积加上分子作分子,分母不变。
分数基本*质
【知识点】:
理解分数的基本*质。
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及商不变的规律,来理解分数的基本*质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本*质,把一个分数化成指定分母(或分子)而大小不变的分数。
找最大公因数
【知识点】:
理解公因数和最大公因数的意义。
两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。
找两个数的公因数和最大公因数的方法。
运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。
会找分子和分母的最大公因数。
补充【知识点】:
其他找最大公因数的方法。
找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。
例如:找15和50的公因数和最大公因数:
可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。
如果两个数是不同的质数,那么这两个数的公因数只有1。
如果两个数是连续的自然数,那么这两个数的公因数只有1。
如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。
也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)
4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。
约分
【知识点】:
理解约分的含义。
把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。
理解最简分数的含义。
像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。
掌握约分的方法。
约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。
补充【知识点】:
比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。
例如:○
找最小公倍数
【知识点】:
理解公倍数和最小公倍数的含义。
两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。
找两个数的公倍数和最小公倍数的方法。
先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。
两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。
补充【知识点】:
其他找公倍数和最小公倍数的方法。
找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。
例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。
如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。
如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。
如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。
也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)
分数的大小
【知识点】:
理解通分的含义。
把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。
通分的两个要点:
和原来分数相等。
分母相同的数字。
分数大小比较。
同分母分数相比较,分子越大分数越大。
同分子分数相比较,分母越小分数越大。
分子分母都不相同的分数相比较的方法。
用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。
是把两个分数化成分子相同的分数,再比较大小。
补充【知识点】:
通分一般以最小公倍数作分母。
数学与交通
相遇
【知识点】:
分析简单实际问题中的数量关系。
路程=速度时间
用方程解决简单的实际问题。
强调列方程解应用题的步骤:
(1)找到题中的等量关系式
(2)解设所求量为x
(3)根据等量关系式列出相应的方程
(4)解答方程,注意结果无单位名称。
(5)检验做答。
补充【知识点】:
速度=路程时间时间=路程速度
旅游费用
【知识点】:
会利用已有的知识,依据实际情况给出较经济的方案。
掌握用列表法解决问题。
看图找关系
【知识点】:
能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表的直观*。
结合实际问题情境,分析量与量之间的关系。
根据图的变化确定或描述行为、事件的变化。
第3篇:初一上册数学数据的收集知识点归纳
普查:为了一定的目的而对考察对象进行的全面调查.
总体:所要考察对象的全体称为总体
个休:组成总体的每一个考察对象称为个体.
抽样调查:从总体中抽取部分个体进行调查.
样本:总体中抽取的一部分个体叫做总体的一个样本.
样本容量:样本中个体的数目.
频数:每个对象出现的次数
频率:每个对象出现的次数与总次数的比值
以上就是为大家整理的精选初一上册数学知识点归纳:数据的收集(第五单元),大家还满意吗?希望对大家有所帮助!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除