特殊角度三角函数值表

特殊角度三角函数值表1

  只想上传这一个表 下面的.都是无用的话 不用看了。

  1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出:

  sin30°=cos60°= sin45°=cos45°=1

  2、列表法:

???值??角
函?数0°30°45°60°90°sincostan0不存在cot不存在0  说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0

  1变化,其余类似记忆.

  3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:

  ① 有界性:(锐角三角函数值都是正值)即当0°<<90°时,

  则00 ; cot>0。

  ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0cosB;cotA>cotB;特别地:若0°<<45°,则sinA

  若45°cosA;tanA>cotA.

  4、口决记忆法:观察表中的数值特征

  正弦、余弦值可表示为形式,正切、余切值可表示为形式,有关m的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.


特殊角度三角函数值表扩展阅读


特殊角度三角函数值表(扩展1)

——初中数学三角函数值诱导公式总结 (菁选3篇)

初中数学三角函数值诱导公式总结1

  三角函数的诱导公式二所表示的是,π+α的三角函数值与α的三角函数值之间的关系。

  公式二

  设α为任意角:对于x轴负半轴为起点轴而言

  弧度制下的角的表示:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  sec(π+α)=-secα

  csc(π+α)=-cscα

  角度制下的角的表示:

  sin(180°+α)=-sinα

  cos(180°+α)=-cosα

  tan(180°+α)=tanα

  cot(180°+α)=cotα

  sec(180°+α)=-secα

  csc(180°+α)=-cscα

  看过上面的公式,我们就知道了其实π+α的三角函数值与α的三角函数值可以轻松地转化。

初中数学三角函数值诱导公式总结2

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直*分,每一条对角线*分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学三角函数值诱导公式总结3

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的*方和等于斜边的*方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。


特殊角度三角函数值表(扩展2)

——最常用三角函数值盘点 (菁选2篇)

最常用三角函数值盘点1

  特殊角的三角函数

  角度a 0° 30° 45° 60° 90° 120° 180°

  1.sina 0 1/2 √2/2 √3/2 1 √3/2 0

  2.cosa 1 √3/2 √2/2 1/2 0 -1/2 -1

  3.tana 0 √3/3 1 √3 无限大 -√3 0

  4.cota / √3 1 √3/3 0 -√3/3 /

  函数名 正弦 余弦 正切 余切 正割 余割

  在*面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

  正弦函数 sinθ=y/r

  余弦函数 cosθ=x/r

  正切函数 tanθ=y/x

  余切函数 cotθ=x/y

  正割函数 secθ=r/x

  余割函数 cscθ=r/y

  正弦(sin):角α的对边比上斜边

  余弦(cos):角α的邻边比上斜边

  正切(tan):角α的对边比上邻边

  余切(cot):角α的邻边比上对边

  正割(sec):角α的斜边比上邻边

  余割(csc):角α的斜边比上对边

最常用三角函数值盘点2

  (1)特殊角三角函数值

  sin0=0

  sin30=0.5

  sin45=0.7071 二分之根号2

  sin60=0.8660 二分之根号3

  sin90=1

  cos0=1

  cos30=0.866025404 二分之根号3

  cos45=0.707106781 二分之根号2

  cos60=0.5

  cos90=0

  tan0=0

  tan30=0.577350269 三分之根号3

  tan45=1

  tan60=1.732050808 根号3

  tan90=无

  cot0=无

  cot30=1.732050808 根号3

  cot45=1

  cot60=0.577350269 三分之根号3

  cot90=0

  (2)0°~90°的任意角的三角函数值,查三角函数表。(见下)

  (3)锐角三角函数值的变化情况

  (i)锐角三角函数值都是正值

  (ii)当角度在0°~90°间变化时,

  正弦值随着角度的增大(或减小)而增大(或减小)

  余弦值随着角度的增大(或减小)而减小(或增大)

  正切值随着角度的增大(或减小)而增大(或减小)

  余切值随着角度的增大(或减小)而减小(或增大)

  (iii)当角度在0°≤α≤90°间变化时,

  0≤sinα≤1, 1≥cosα≥0,

  当角度在0°<α<90°间变化时,

  tanα>0, cotα>0.

  “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的.内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。


特殊角度三角函数值表(扩展3)

——特殊三角函数值知识点 (菁选2篇)

特殊三角函数值知识点1

  函数名 正弦 余弦 正切 余切 正割 余割

  在*面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的'坐标为(x,y)有

  正弦函数 sinθ=y/r

  余弦函数 cosθ=x/r

  正切函数 tanθ=y/x

  余切函数 cotθ=x/y

  正割函数 secθ=r/x

  余割函数 cscθ=r/y

  正弦(sin):角α的对边比上斜边

  余弦(cos):角α的邻边比上斜边

  正切(tan):角α的对边比上邻边

  余切(cot):角α的邻边比上对边

  正割(sec):角α的斜边比上邻边

  余割(csc):角α的斜边比上对边

特殊三角函数值知识点2

  sin0°=0 sin30°=1/2 sin45°=√2/2 sin60°=√3/2 sin90°=1

  cos0°=1 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 cos90°=0

  tan0°=0 tan30°=√3/3 tan45°=1 tan60°=√3

  cot30°=√3 cot45°=1 cot60°=√3/3 cot90°=0


特殊角度三角函数值表(扩展4)

——同角三角函数的基本关系说课稿3篇

同角三角函数的基本关系说课稿1

  一、教材分析

  1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。

  2、教学目标的确定及依据

  A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。

  B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。

  C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

  3、教学重点和难点

  重点:同角三角函数基本关系式的推导及应用。

  难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。

  二、学情分析:

  学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。

  三、教法分析与学法分析:

  1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。

  2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题。数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

  四、教学过程设计

  强调:sin是(sin)并不是sin

  设计意图:从具体到抽象,引导学生完成抽象与具体之间的相互转换

  2、思考:

  问题1:从以上的过程中,你能发现什么一般规律?

  问题2:你能否用代数式表示这两个规律?

  设计意图:引导学生用特殊到一般的思维来处理问题,通过观察思考,感知同角三角函数的基本关系。

  3、证明公式:(同角三角函数基本关系)

  (1)、*方关系:(2)、商的关系:

  回忆:任意角三角函数的定义?

  学生回答:设α是一个任意角,它的终边与单位圆交于点P(x,y)则:

  sin=y;cos=x,

  引导学生注意:单位圆中

  所以:sin+cos=;=

  设计意图:引导学生运用已知知识解决未知知识,体会数学知识的形成过程。

  4、辨析讨论—深化公式

  辨析1思考:上述两个公式成立有什么要求吗?

  设计意图:注意这些关系式都是对于使它们有意义的角而言的。如(2)式中辨析2判断下列等式是否成立:

  设计意图:注意“同角”,至于角的形式无关重要,突破难点。

  辨析3思考:你能将两个公式变形么?

  (师生活动:对于公式变式的认识,强调灵活运用公式的几大要点。)

  设计意图:对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用)如:....等

  5、运用新知、培养能力。

  自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现。刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?

  例1、

  思考1:条件“α是第四象限的角”有什么作用?

  思考2:如何建立cosα与sinα的联系?如何建立他们与tanα的联系?

  设计意图:借助学生对于刚学习的知识所拥有的探求心理,让他们学习使用两个公式来求三角函数值。

  思考:本题与例题一的主要区别在哪儿?如何解决这个问题?

  设计意图:对比之前例题,强调他们之间的区别,并且说明解决问题的方法:针对α可能所处的象限分类讨论。

  变式2、

  设计意图:类比练习,已知正弦,也可求余弦、正切。

  变式3、

  设计意图:通过例题与变式使学生掌握基本关系式的应用:已知一个角的一个三角函数值能求这个角的其他三角函数值,并在求三角函数值的过程中注意由函数值正、负号的选取而导致的角的范围的讨论,培养学生分类讨论思想。突破重难点。

  小结:(由学生自己总结,师生共同归纳得出)

  3、注意:若α所在象限未定,应讨论α所在象限。

  设计意图:利用例题与变式,共同总结两类问题的解决方法,培养学生归纳分析能力。

  例2、已知tan=2,求的值

  设计意图:

  利用商的关系的灵活使用,解法多样,通过对公式正向、逆向、变式使用加深对公式的理解与认识。

  证法2:通过变形等式,先把分式化为整式,再利用同角三角函数的*方关系即可证得。

  设计意图:同角三角函数*方关系灵活使用,通过对公式正向、逆向、变式使用加深对公式的理解与认识。

  思考:是否还有其他的证明方法?

  方法3:左边减去右边,如果等于零,则等式成立。

  方法4:左边除以右边,如果等于一,则等式成立。(保证分母不为零)

  设计意图:发散学生的思维,为下面的总结做好铺垫,突破本节难点

  总结证明三角恒等式经常使用的方法:

  1:从等式左边变形到右边;

  2:从恒等式出发,转化到所要证明的等式上;

  3:左边减去右边等于0;

  4:左边除以右边等于1(保证分母不为零)。

  6、课堂小结,深化认识

  让学生自己总结本节课的重点、难点和学习目标,教师再补充.这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用。

  公式推导:具体算式→观察→猜想→论证→基本关系式

  公式应用:

  一般方法(例1):先确定象限角再求值。分类讨论思想

  特殊方法(例2):化切为弦和化弦为切。整体思想、化归思想

  灵活运用公式(例3):证明恒等式

  7、作业布置:

  (1)、已知,求、变式1、变式2、

  设计意图:巩固所学公式,并灵活运用;分层设计,题(1)是在课堂例题的延伸,题(2)是在课堂上没讲的题型,检测学生对知识的迁移能力。

  8、板书设计

  同角三角函数基本关系式

  一、公式二、例题例2

  1、sin2+cos2=1;例1

  2、tan=变式1

  公式变形:例3,变式2,变式3

  三:总结

  ……

  五、教学反思:

  如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑**号,而**号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的`情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。


特殊角度三角函数值表(扩展5)

——锐角三角函数教学反思 (菁选5篇)

锐角三角函数教学反思1

  对照生命课堂的理念,自我反思如下:

  1、营造安全,受鼓励的学习环境。

  整个课堂过程,我给与了学生一个安全的学习环境,很好的保护了学生的个性发展。在探究三角函数概念以及例题讲解部分充分的给与学生展示的机会,通过让学生讲解,给了学生很大的鼓励,增强了学生的自信心。只是我在对于评价这个方面尚还很欠缺,缺少的是教师语言**能力。

  2、自学,交流,汇报,评价流程。

  引入复习内容后,让学生完成考点管理知识的总结,有疑问的小组内互相交流解决。小组内解决不了的,汇报老师和学生一起解决。这个环节上,**自主学生的比较好,可能是知识点过于简单,讨论交流的比较少。

  3、教学过程有效,深刻,真实。

  从知识点的复习到例题的讲解,时间上的把握与教学目标的完成都是恰到好处。体现了教学过程的真实性。

  4、培养学生理性的批判性思维与创造性思维。

  在学生讲解题目的时候,对于不同的观点,学生都会提出来,特别是在tan2A是否等于tanA这个部分,同学谈论激烈,在这一过程上充分体现了学生的批判性思维。但是在这里,由于时间关系,并未让学生自己去探索结果,而是由我提醒学生的。这方面应该要学会忍住,让学生自己来说。

锐角三角函数教学反思2

  初中阶段学生第一次接触到三角函数,三角函数跟学生原来所学的一次函数,二次函数在本质上都不相同,所以,对学生来说,学习锐角三角函数存在一一的困难,课上完后,也认真思考了课的效果。现反思如下:

  首先:锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

  这节课主要是概念教学,要使学生明确概念的背景、作用、概念中有哪些规定、限制等问题,因此,我在引入锐角三角函数概念的时候,我先设计了两道题:一是问直角三角形的三边之间有什么关系,学生很快想到勾股定理;二是问直角三角形中两锐角之间有何关系,学生也可以想到两角互余。然后我从学生的认知水*出发又提出问题:

  (1)如图Rt△ABC中,AC=3,BC=4,求AB=?

  (2)如图Rt△ABC中,AC=3,∠B=40°,求AB=?

  对于第一个问题,学生在对勾股定理的已有认知基础上,很容易求出AB,但对第二个问题,则不够条件求AB了。我就顺势导出这就是今天要学习的直角三角形的边角关系——锐角三角函数,从而引出课题。我认为在引入新课这个环节我设计的很好,既复习了旧知识,又为新课做好了铺垫,同时激发了学生的求知欲望,这是一个成功之处。

  第二是:我画出三个直角三角形,并设计了几个填空,这些填空就是:对比斜、邻比斜、对比邻、邻比对,等学生完成简单的填空后,我引入了正弦,余弦,正切的'定义,写法,这样可以让学生在数形结合的情况下,掌握好锐角三角函数的相关定义。从课堂效果来看,这种方法,学生还是容易明白的。这是成功之二。

  我在教学中还注重解题方法的总结,本节课有一道例题,是这样设计的:

  例1:求出如图所示的Rt△ABC中∠A的四个三角函数值.

  解:∵在Rt△ABC中,BC=8,AC=15,

  ∴AB=

  sinA=

  cosA=

  tanA=

  我以填空的形式,帮助学生做好一些脚手架,我认为在普通班是必要的,也是对学生的解答有帮助性的作用。在实际教学过程中,学生都能做出这题,所以我只是略略讲解后就开始进行相关练习。可是在做A组第一题:“Rt△DEC中,∠E=90゜,CD=10,DE=6,求出∠D的四个三角函数值。”这道题中,有部分学生出现不知怎么下笔的情况。这就说明了我讲解的时候还是少了一个归纳的步骤:如何求解直角三角形,以及最少需要几个条件。帮助学生归纳出求三角函数的方法。应该指出为什么要运用勾股定理,让学生明确求四个三角函数必须知道三条边。这样在做练习时他们就能确定解题思路,明确预见利用勾股定理求出CE。这也是本课课不足之处。

  另外,在突破本节课的教学难点时,我设计了一道有一个公共角的三个直角三角形,突破了直角三角形的大小,利用相似三角形的性质,让学生体会到,四个三角函数值只与角的大小无关,与三角形的边长无关。

  在课后反思中,我打算在下一次教学设计进行修改,对于水*比较低的班级,可以按填空的开形式出现。并得出三角函数的定义,也可以尝试不填空,让学生自主探索,看学生能不能找到对比斜,邻比斜,对比邻的大小不变的规律性。

  本节课是《锐角三角函数》,但我在设计教学时,没有考虑到和函数的定义联系起来,学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。

锐角三角函数教学反思3

  初中阶段学生第一次接触到三角函数,三角函数跟学生原来所学的一次函数,二次函数在本质上都不相同,所以,对学生来说,学习锐角三角函数存在一一的困难,课上完后,也认真思考了课的效果。现反思如下:

  首先:锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

  这节课主要是概念教学,要使学生明确概念的背景、作用、概念中有哪些规定、限制等问题,因此,我在引入锐角三角函数概念的时候,我先设计了两道题:一是问直角三角形的三边之间有什么关系,学生很快想到勾股定理;二是问直角三角形中两锐角之间有何关系,学生也可以想到两角互余。然后我从学生的认知水*出发又提出问题:

  (1)如图Rt△ABC中,AC=3,BC=4,求AB=?

  (2)如图Rt△ABC中,AC=3,∠B=40°,求AB=?

  对于第一个问题,学生在对勾股定理的已有认知基础上,很容易求出AB,但对第二个问题,则不够条件求AB了。我就顺势导出这就是今天要学习的直角三角形的边角关系——锐角三角函数,从而引出课题。我认为在引入新课这个环节我设计的很好,既复习了旧知识,又为新课做好了铺垫,同时激发了学生的求知欲望,这是一个成功之处。

  第二是:我画出三个直角三角形,并设计了几个填空,这些填空就是:对比斜、邻比斜、对比邻、邻比对,等学生完成简单的填空后,我引入了正弦,余弦,正切的定义,写法,这样可以让学生在数形结合的情况下,掌握好锐角三角函数的相关定义。从课堂效果来看,这种方法,学生还是容易明白的。这是成功之二。

  我在教学中还注重解题方法的总结,本节课有一道例题,是这样设计的:

  例1:求出如图所示的Rt△ABC中∠A的四个三角函数值.

  解:∵在Rt△ABC中,BC=8,AC=15,

  ∴AB=

  sinA=

  cosA=

  tanA=

  我以填空的形式,帮助学生做好一些脚手架,我认为在普通班是必要的.,也是对学生的解答有帮助性的作用。在实际教学过程中,学生都能做出这题,所以我只是略略讲解后就开始进行相关练习。可是在做A组第一题:“Rt△DEC中,∠E=90゜,CD=10,DE=6,求出∠D的四个三角函数值。”这道题中,有部分学生出现不知怎么下笔的情况。这就说明了我讲解的时候还是少了一个归纳的步骤:如何求解直角三角形,以及最少需要几个条件。帮助学生归纳出求三角函数的方法。应该指出为什么要运用勾股定理,让学生明确求四个三角函数必须知道三条边。这样在做练习时他们就能确定解题思路,明确预见利用勾股定理求出CE。这也是本课课不足之处。

  另外,在突破本节课的教学难点时,我设计了一道有一个公共角的三个直角三角形,突破了直角三角形的大小,利用相似三角形的性质,让学生体会到,四个三角函数值只与角的大小无关,与三角形的边长无关。

  在课后反思中,我打算在下一次教学设计进行修改,对于水*比较低的班级,可以按填空的开形式出现。并得出三角函数的定义,也可以尝试不填空,让学生自主探索,看学生能不能找到对比斜,邻比斜,对比邻的大小不变的规律性。

  本节课是《锐角三角函数》,但我在设计教学时,没有考虑到和函数的定义联系起来,学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。

锐角三角函数教学反思4

  思维总是从问题开始的,有问题,学着才主动。学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。

  一、 在教学时对学生状况进行了正确的分析,这是成功的开始。

  有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。不利因素及对策:初三学生两极分化明显,不同学生的认知水*、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。另外,学生虽然学过函数知识,但是锐角三角函数是初次接触,学生不易理解。所以,在教学中关键是抓住三角函数定义的理解,由浅入深,逐步解决问题。

  二、 教学过程注重学生基础知识的掌握及能力的培养。

  本节课不仅要使学生了解三角函数的概念,而且要理解三角函数制值只与角的大小有关,即当某一锐角取固定值时,这角的三角函数值不仅存在,而且唯一。教学大纲明确指出,培养学生的分析问题、解决问题的能力是数学教学的一项重要任务。因此,根据教学目的的要求,在教学过程中让学生逐步学会观察、探索、猜想、发现新知识,培养学生解决问题的能力。

  三、 为了充实课堂容量,加强教学效果,采取了多种教学方式。

  根据学生已有的知识结构,我把两节课的内容合并成一节,原因是学生探究出正弦的概念的同时,轻而易举地能得出余弦、正切的概念,这样更有助于学生对知识的联贯性学习。在教学过程中采用了多**教学。

  四、 教学过程中的不足在课堂教学过程中,将教师的指导教学和学生的自主学习有效地结合起来,圆满完成了本节内容的教学任务。

  并且,在自己的努力下,课堂教学中有些环节上有了很大的进步,特别是把两节的内容合并成一节按时间完成了教学任务。还有很多不足之处,譬如:从自身的角度看,和学生的交流做的不够、讲与练时间**的不太好,特别在督促学生动笔书写方面;从学生的角度看,学生灵活运用概念的能力较差,及计算能力也有待加强。总之,本节内容的教学还是比较成功的,当然也有不足之处,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的.兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水*。在总结、反思中不断提升自己的教学水*。

锐角三角函数教学反思5

  锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系,锐角三角函数教学反思。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

  在今后教学过程中,自己还要多注意以下两点:

  (1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的***还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现,教学反思《锐角三角函数教学反思》。我将不断摸索,不断实践。

  (2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。


特殊角度三角函数值表(扩展6)

——广东高考数学三角函数复习试题 (菁选2篇)

广东高考数学三角函数复习试题1

  1.已知函数y=Asin(ωx+φ)+k的最大值为4,最小值为0,最小正周期为,直线x=是其图象的一条对称轴,则下面各式中符合条件的解析式为(  )

  A.y=4sin   B.y=2sin+2

  C.y=2sin+2 D.y=2sin+2

  答案:D 解题思路:由题意:解得:又函数y=Asin(ωx+φ)+k最小正周期为,

  ω==4, f(x)=2sin(4x+φ)+2.又直线x=是f(x)图象的一条对称轴,

  4×+φ=kπ+, φ=kπ-,kZ,故可得y=2sin+2符合条件,所以选D.

  2.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是(  )

  A.[6k-1,6k+2](kZ) B.[6k-4,6k-1](kZ)

  C.[3k-1,3k+2](kZ) D.[3k-4,3k-1](kZ)

  答案:B 解题思路:|AB|=5,|yA-yB|=4,所以|xA-xB|=3,即=3,所以T==6,ω=.由f(x)=2sin过点(2,-2),即2sin=-2,0≤φ≤π,解得φ=.函数f(x)=2sin,由2kπ-≤x+≤2kπ+,解得6k-4≤x≤6k-1,故函数的单调递增区间为[6k-4,6k-1](kZ).

  3.当x=时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f是(  )

  A.奇函数且图象关于点对称

  B.偶函数且图象关于点(π,0)对称

  C.奇函数且图象关于直线x=对称

  D.偶函数且图象关于点对称

  答案:C 解题思路:由已知可得f=Asin+φ=-A, φ=-π+2kπ(kZ),

  f(x)=Asin,

  y=f=Asin(-x)=-Asin x,

  函数是奇函数,关于直线x=对称.

  4.将函数y=sin的图象上各点的横坐标伸长到原来的3倍,再向右*移个单位,得到的函数的一个对称中心是(  )

  A. B.

  C. D.

  答案:A 命题立意:本题考查了三角函数图象的*移及三角函数解析式的对应变换的求解问题,难度中等.

  解题思路:将函数y=sin图象上各点的横坐标伸长到原来的3倍,得y=sin,再向右*移个单位,得y=sin=sin 2x,令2x=kπ,kZ可得x=kπ,kZ,即该函数的对称中心为,kZ,故应选A.

  易错点拨:周期变换与*移变换过程中要注意变换的仅是x,防止出错.

  5.已知函数f(x)=sin(xR,ω>0)的部分图象如图所示,点P是图象的最高点,Q是图象的最低点,且|PQ|=,则f(x)的最小正周期是(  )

  A.6π    B.4π    C.4     D.6

  答案:D 解题思路:由于函数f(x)=sin,则点P的纵坐标是1,Q的纵坐标是-1.又由|PQ|==,则xQ-xP=3,故f(x)的最小正周期是6.

  6.设函数f(x)=sin x+cos x,把f(x)的图象按向量a=(m,0)(m>0)*移后的图象恰好为函数y=-f′(x)的图象,则m的最小值为(  )

  A. B.

  C. D.

  答案:C 解题思路:f(x)=sin x+cos x=sinx+,y=-f′(x)=-(cos x-sin x)=sin, 将f(x)的图象按向量a=(m,0)(m>0)*移后得到y=sin的图象, sin=sin.故m=+2kπ,kN,故m的最小值为.

广东高考数学三角函数复习试题2

  1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。

  2.要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的`含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

  3.对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在*时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。*时,我们看到一些人,做题时从不用常规方法,总自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而*时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

  4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

  5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

  6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除