数学建模论文10篇

数学建模论文1

  摘要:现代物流产业是当今新型的经济产业,国民经济建设中,其已几乎扩展到国民经济的各个领域,具有广阔的发展前景和巨大的发展潜力。同时现代物流业具有极强的综合性,因而正确的物流需求预测对于物流产业的宏观**制定,抑或是微观层面的企业规划和经营,都具有指导作用。货物周转量是物流需求非常重要的一项指标,文章结合物流需求的特点,通过货物周转量对具有交通中枢地位的武汉市物流需求影响进行预测。本文运用货物周转量,生产总值两指标,结合2000-2012年武汉地区GDP值,基于双变量线性回归模型方法,对交通枢纽武汉进行物流需求分析预测,以说明武汉未来的物流需求情况。

  关键词:货物周转量;物流需求预测;回归模型

  引言

  21世纪以来,随着经济全球化的发展和网络经济的兴起,现代物流业不断加速发展,其也被誉为“黄金产业”。在我国经济现代化建设中,现代物流业已几乎扩展到国民经济的各个领域,并愈发显示出其广阔的发展前景和巨大的发展潜力,很多占据重要地理位置的地区或省份甚至已将物流产业作为支柱产业或新兴产业列入其地区发展计划。

  武汉,位于*腹地中心,物流资源丰富,全国重要的交通枢纽,素有“九省通衢”之称。其在发展现代物流业方面具有得天独厚的优势,因而武汉提出了以发展物流来实现本地经济的“跨越式发展”,并已通过把现代物流业作为新的经济增长点列入全市发展计划之中。

  然而,作为新型的经济产业,现代物流业具有很强的综合性。无论是在物流产业的宏观决策上,还是物流企业规划和经营的微观层面,都需要以正确的预测为先导。我国经济已由**开放后的经济快速增长阶段进入到中速发展过程中,在经济调整和转型之中,已充分认识到现代物流业的重要性,高效的现代物流业对于地区经济发展或者国家经济进步的支撑作用越来越明显,。因此,在这样的背景之下,以合理的物流需求预测为基础所作出科学的决策,是保证物流产业健康发展的必要措施。

  一、物流需求预测

  物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。

  物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:

  (一)物流需求预测是是物流管理的必要环节

  对物流发展中的各个因素实施**是物流企业进行规划和经营的前提,而这种**需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。

  (二)物流需求预测能够改善物流管理

  物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要**。

  (三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据

  物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。

  二、武汉物流需求的双变量线性回归模型预测

  (一)回归模型的一般形式

  回归分析预测法是一种重要的市场预测方法,其是在分析市场现象自变量和因变量之间相关关系的基础上,来建立变量之间的回归方程,并将其作为预测模型。

  回归模型的一般形式为:

  ; ①

  式①中,X为自变量,Y为因变量, 和 为未知系数, 为误差分量。当然,模型具有实用价值的前提是拟合度良好且回归系数显著。

  (二)回归模型的预测

  1.指标的确定

  货物周转量,是指各种运输工具在报告期内实际运送的每批货物重量分别乘其运送距离的累计数。其不仅包括了运输对象的数量,还包括了运输距离因素,因而能比较全面地反映运输生产结果。其是反映物流业需求的重要指标。

  货物周转量的影响因素很多,通过参考大量文献可知,货物周转量与生产总值存在显著的相关性,综合考虑数据的可查询性,本文选取武汉市**来的'货物周转量和生产总值作为变量,进行双变量线性回归模型分析并进行相应预测。

  以货物周转量为因变量,武汉生产总值为自变量。下表是武汉市2000年到2012年的相关原始数据:

  2.回归模型设定

  一般来说,EXCEL和SPSS在预测应用方面均存在各自的优缺点,鉴于此,本文将二者结合起来应用,充分利用SPSS能够准确容易获取预测值,且模型多样化,快速方便的优势以及EXCEL在绘制图形方面简便的特点,,将首先用SPSS进行相关预测模型的选择和预测值确定,再用EXCEL进行预测值绘图,从而简单快速的完成相关预测。则可以设定双变量线性回归模型为: ;其中,生产总值为 ,货物周转量为 。

  用EXCEL作货物周转量和生产总值的散点图,如图1所示:

  3.回归分析

  根据上述数据,通过SPSS19.0统计软件进行线性回归分析:

  4.回归方程有效性检验

  (1)拟合优度的检验

  则从表中可知,相关性系数为R=0.992,相关性明显;同时调整后的拟合系数R2=0.983,说明在货物周转量的总变差中,模型所作出的解释部分达到了98.3%,即模型的拟合效果显著。

  (2)回归参数的显著性检验

  回归方程的显著性检验结果见上表,统计量F=690.815,相应的置信水*为0.000<0.001,结果表明回归方程非常显著;同时常数和自变量系数的回归方程检验的置信水*由表2知为0.000<0.001,即模型的系数显著。

  (3)模型预测效果的检验 通过SPSS19.0统计软件得出相应回归模型的同时,将该模型从2000-2012年的预测值保存到数据视图中,如下表所示 从表中可知,货物周转量的绝对误差最大值为215.9195;相对误差最20.34%;*均相对误差为0.89%,可以预见,模型总体预测效果良好。 再从预测值和实际值的曲线图形来比较,将原始数据和预测值数据复制到EXCEL中,利用EXCEL绘图简便的特点,绘制中货物周转量的实际值图形和预测值图形,如下图所示 图2 预测值与实际值的曲线比较 从图中可知,回归预测曲线拟合情况良好,从而进一步证明了回归预测模型的有效性。 四、结论分析 通过对武汉2000-2012年相关数据进行线性回归预测,能够得到如下结论: 第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起0.346单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。

  第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济**,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是**物流需求的一个量,并不能完全**物流需求,因而需要根据实际情况适实地对其加以修正。 参考文献[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 2009(09). [2]杨帅.武汉市物流需求预测[J].当代经济.2007(10). 汪宇翰.预测物流需求的一元线性回归分析方法 [J].商场现代化.2006(13). 李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.2010(08). 张文彤,闫洁.SPSS统计分析基础教程[M]. **:高等教育出版社,2004.

数学建模论文2

  数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

  一、数学应用题的特点

  我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

  第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事**等有关的应用题等。

  第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

  第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

  第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

  二、数学应用题如何建模

  建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:

  第一层次:直接建模。

  根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:

  将题材设条件翻译

  成数学表示形式

  应用题

  审题

  题设条件代入数学模型

  求解

  选定可直接运用的

  数学模型

  第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

  第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

  第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流*稳,没有突发事件等才能建模。

  三、建立数学模型应具备的能力

  从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

  3.1提高分析、理解、阅读能力。

  阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

  3.2强化将文字语言叙述转译成数学符号语言的能力。

  将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

  例如:一种产品原来的成本为a元,在今后几年内,计划使成本*均每一年比上一年降低p%,经过五年后的成本为多少?

  将题中给出的文字翻译成符号语言,成本y=a(1-p%)5

  3.3增强选择数学模型的能力。

  选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

  函数建模类型

  实际问题

  一次函数

  成本、利润、销售收入等

  二次函数

  优化问题、用料最省问题、造价最低、利润最大等

  幂函数、指数函数、对数函数

  细胞**、生物繁殖等

  三角函数

  测量、交流量、力学问题等

  3.4加强数*算能力。

  数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数*算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

  利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模论文3

  摘 要:该文描述了出现在双连杆机械臂动态参数模型中的问题,并对其性能进行了评估。创建了机械臂的运动模型,连接在绝对空间中链接位移与夹持器中心位置,解决了链接位置的正向运动问题。同时得到一组非线性函数,建立了机械臂的广义坐标和笛卡尔坐标之间的连接。使用Denavit-Hartenberg方法对运动链进行编码。作为解决逆运动学问题的结果,获得一个给定的位置和夹持器输出链路方向的广义坐标方程系统。在数学软件MATLAB(Simulink)中分析得到系统动力学的模型。该文的结论通过数学实验进行证实。

  关键词:双连杆机械臂 运动链 动态模型

  根据设计的机器人的指定技术特点与必要性来提供所需要的动态性能,系统性能,并且给定重放轨迹运动的精度,运动的稳定性。实现所期望性能的一种方式是在机器人设计和配置时使用机器人仿真。

  仿真方法可以通过减少在概念设计阶段找到解决方案的迭代次数,从而显著缩短设计时间。在机器人系统流程过程中建模可以获得等效信号,操作机器人;考虑各种因素对机器人和它各单位的影响;计算其稳定性、速度、精度;优化单独的模块与整个机器人系统作为一个整体。现代机器人系统的动力学建模方法涉及建立真正的机器人运动学和动力学适当的数学模型。

  机器人动力学模型不仅可以计算它的设计特性,还可以计算其速度(时间**),动态过程的性质(单调性,非周期性,和振荡)。

  研究过程中对机械臂的操作是必要的,首先,使它成为一个运动模型,即一个模型连接它与绝对空间中的夹持器的中心位置的位移的链接[1-2]。

  指定在三维空间中点的位置就足以确定其在绝对(固定)坐标系统中的坐标。描述一个刚体需要与它自己(相关的)坐标系相结合。

  在国际实践中普遍使用的方法是基于对Denavit-Hartenberg坐标系的采用[3]。目前的工作是致力于在双连杆机械臂的动态过程建模。

  1 机械臂运动学

  分析组成机械臂的两个链接:关于一个广义坐标的垂直轴线旋转链接和沿水*轴偏移的一个广义链路坐标。这些坐标位移决定了机械臂的`位置。为了描述机械臂运动学问题必须要解决正、逆运动学问题。

  这些任务的解决方案用于机械臂工作区的建设。另外,由此产生的方程组是随后的处理运动任务的起点。解决方案是一组建立机械臂广义坐标与笛卡尔坐标之间联系的非线性函数。图1显示了该机械臂的运动学。

  采用Denavit-Hartenberg方法编码运动链。然后建立对机械臂的运动学正问题的绝对和相对坐标形式的约束方程:

  -在一般形式上

  -与特定的值

  因此:

  获得机械臂的运动方程:

  链接1:

  链接2:

  获得扩展链路的整体速度:

  逆运动学问题是确定一个给定位置和它的输出链路定位(夹具)的机器人的广义坐标[4-5]。有多种方法用于求解逆运动学问题,但大多数是与超越方程系统的解相关。

  让我们用三角法来解决这一问题。

  从方程组发现后,针对这种划分获得

  显然,在第一连杆的旋转角度可以被定义为

  For to find the use identity ,thenobtain:,obvious that ,then finally get ,hence.

  查找使用的身份,进而获得:,显而易见的是,最终得到了想要的结果,因此。

  其结果是,我们得到一个广义坐标方程系统:

  随时间变化的变量集,设置唯一标识的机器人连杆的相对位置。因此,机械系统的配置称为广义坐标。在完整力学系统中一些广义坐标的n等于**度的数目。

  2 机械臂动力学

  研究人员对机器人动力学有着极大的兴趣。当导出机器人动力学方程的解析形式时可以用拉格朗日或者阿佩尔形式进行描述。在正式说明的情况下,拉格朗日需要对动能和广义力推导出解析表达式,在使用形式化描述阿佩尔的情况下―能量,加速度,和转化的广义力。确定必要的动能,在一般情况下,为了确定质量速度的构成系统和固体角速度矢量实心体的中心刚体的动能在绝对坐标系的变换下是不发生改变的。

  这使我们能够获得惯性张量的变换公式之交

  一旦将每个环节的动能进行描述解析,找到整个系统的总动能很重要:

  找到的每一个链接的动能:

  各链接的转动惯量:

  让我们假设

  经过变换和替换得到

  获取拉格朗日方程的每一个环节。区分系统的总动能交替关于。

  该操作的结果是,我们得到了各链接下面的等式:

  链接1:

  链接2:

  (1)

  结合系统得出方程:

  (2)

  柯西变换结果系统的一般形式,替代:

  (3)

  3 模拟分析

  分析所得的方程系统,在MATLAB特别是在其组件Simulink中建立一个数学工程的系统动力学模型。图2表示的是一个由柯西的正常形式的方程得到的一个系统动态模型。该模型是通用的,可用于参数不同的确定质量和尺寸的机械臂的机器人的研究。建模的目的是确定其发生过程的动作速度和性质,确认机械臂关节耦合(在同步运动)及速度和转速的行为。

  在建模过程中已经使用下列参数:重量负载-,一个夹持器的延伸速度-,绕垂直轴旋转的速度-,其余参数在建模过程中进行计算。

  根据对模型的研究结果显示,进行定性评估。

  建模:

  对旋转模块;

  对机械臂的扩展模块。

  瞬态过冲:

  静态误差值:

  过渡过程中的上升时间:

  得到的定性评估结果相当接近于具有适当质量和尺寸和参数的双连杆机器人的试验评估。评估结果表明,该模型在评估有另一个处理重量和力-速度特性的类似机器人动态参数时十分有效。

  4 结语

  因此,建立的双连杆机器人模型允许评估他们在这个模式下的行动速度,产生的性质,确定在他们同步运动时的关节耦合时刻。

  参考文献

  [1] Zenkevich S.L.,Yushchenko A.S., Fundamentals of robotic manipulator control[M].Moscow,2ed,2004.

  [2] Pshihopov V.H.,Time-optimal trajectory control of electromechanical robotic manipulator[J].Electromechanics,2007(1):51-57.

数学建模论文4

  一、在高等数学教学中运用数学建模思想的重要性

  (1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

  (2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

  (3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

  二、高等数学教学中数学建模能力的培养策略

  1.教师要具备数学建模思想意识

  在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

  2.实现数学建模思想和高等数学教材的互相结合

  教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水*。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。

  3.理清高等数学名词的概念

  高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

  教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

  4.加强数学应用问题的培养

  高等数学中,主要有以下几种应用问题:

  (1)最值问题

  在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

  (2)微分方程

  在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

  (3)定积分

  微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

  三、结语

  总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。

数学建模论文5

  一、数学建模与数学建模意识

  数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为**某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。

  高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。

  二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。

  我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。

  三、在数学建模活动中要充分重视学生的主体性

  提高学生的主体意识是新课程**的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和**解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的**性和批判性,表现为喜欢**思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。

  教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

  四、处理好数学建模的过程与结果的关系

  我国的中学数学新课程**已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。 五、数学建模教学与素质教育

  数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水*的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。

  1.构建建模意识,培养学生的转换能力

  *曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、**思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。

  2.注重直觉思维,培养学生的想象能力

  众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。

  3.灌输“构造”思想,培养学生的创新能力

  “一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

  当然,数学建模在现在的高中数学教育中的地位和作用更加重要。但究竟如何在高中搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大高中学教师和教育工作者所思考和探索的问题。

数学建模论文6

  《新课程标准》对学生提出了新的教学要求,要求学生:

  (1)学会提出问题和明确探究方向;

  (2)体验数学活动的过程;

  (3)培养创新精神和应用能力。

  其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

  数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

  数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?

  数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

  一、在教学中传授学生初步的数学建模知识

  中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

  二、培养学生的数学应用意识,增强数学建模意识

  在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“*用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。

  三、在教学中注意联系相关学科加以运用

  在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数**过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的等等。这些需要教师在*时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

  最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学的和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

数学建模论文7

  1高等数学教学中数学建模思想应用的优势

  1.1有助于调动学生学习的兴趣

  在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。

  2.2有助于提高学生的数学素质随着科学技术水*的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的**管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数*用能力与实践能力,进而提高学生的综合素质。

  1.3有助于培养学生的创新能力

  和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数*用能力,培养了学生的创新意识,增强了学生的创新能力。

  2高等数学教学中数学建模思想应用的原则

  在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与**。在实际教学中,不要强求**,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。

  3高等数学教学中融入数学建模思想的有效方法

  3.1转变教学观念

  在高等数学教学中应用数学建模思想,需要重视教学观念的`转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。

  3.2高等数学概念教学中的应用

  在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。

  3.3高等数学应用问题教学中的应用

  对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要**,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。

  4高等数学教学中应用数学建模思想的注意事项

  4.1避免“题海战术”

  数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。

  4.2强调学生的**思考

  在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生**思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。

  4.3注意恐惧心理的消除

  在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的**作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。

  5结语

  总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水*。

数学建模论文8

  一、高等数学教学的现状

  (一) 教学观念陈旧化

  就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

  (二) 教学方法传统化

  教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于**课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

  二、建模在高等数学教学中的作用

  对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,**出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然**高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水*差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

  高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

  三、将建模思想应用在高等数学教学中的具体措施

  (一) 在公式中使用建模思想

  在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

  (二) 讲解习题的时候使用数学模型的方式

  课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水*的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

  (三) **学生积极参加数学建模竞赛

  一般而言,在竞赛中可以很好地锻炼学生竞争意识以及**思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

  四、结束语

  高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

  参考文献

  [1] 谢凤艳,杨永艳。 高等数学教学中融入数学建模思想[J]。 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 —120。

  [2] 李薇。 在高等数学教学中融入数学建模思想的探索与实践[J]。 教育实践与**,2012 ( 04) : 177 —178,189。

  [3] 杨四香。 浅析高等数学教学中数学建模思想的渗透 [J]。长春教育学院学报,2014 ( 30) : 89,95。

  [4] 刘合财。 在高等数学教学中融入数学建模思想 [J]。 贵阳学院学报,2013 ( 03) : 63 —65。

数学建模论文9

  一、我校学生数学建模现状

  1.高职生的数学基础相当薄弱,学**惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。

  2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。

  3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。

  4.**数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。

  5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。

  6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。

  二、参加数学建模比赛的意义

  1.有利于培养学生综合解决问题的能力

  因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。很多参赛学生事后感叹到团队合作能力对于建模比赛很重要,这对他们以后参加工作也会有很好的帮助。

  2.有利于促进高职数学课程的**

  大多数学校的高职数学课还是采用教师在上面讲,学生在下面听的方法,殊不知对于高职生而言,他们不但听不懂,而且也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,老师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

  三、数学建模课的发展建议

  由于参加数学建模竞赛可以激起学生学习数学的兴趣,提高学生运用数学和计算机技术解决问题的综合能力,激励学生积极参加课外科技活动,开拓学生的知识视野,培养学生的创新意识和团队合作意识,推动高等数学教学体系,教学内容和教学方法的**。基于此,给出一些建议如下:

  1.把数学建模的管理层次上升到学院,因为只有学院的大力**,**的****才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和**,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。

  2.成立数学建模协会小组,并有学校资金的**,这样可以把对数学建模有兴趣的同学集中在一起,让他们之间相互讨论。建模协会应该有协会会长及其他管理者,这样他们在运营*时的协会工作时才能各司其职,并有一定的**性和纪律性。协会*时可以**一些经典的数学建模的小案例以海报的形式展现在全校学生面前,或者是以有奖竞猜的方法提高学生的参与性,这样不仅可以达到宣传数学建模的效果,也可以更好的提高学生的理性思维能力。

  3.*时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。而且选修课只有一个老师教,力度太小。应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。另外,必须赛前集中培训,因为*时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。

  4.技能大赛的数学建模比赛应该和学校其他教学系的比赛错开时间,因为学院的技能大赛一般是三天,多数项目的比赛时间通常只有半天,但数学建模恰恰是技能大赛中最特殊的一项比赛,首先是耗时长,正规的数学建模比赛是需要三天的时间,需要学生选定题目后在三天的时间里选定题目后完成一篇完整的论文;其次是必须三人一项小组,由于数学建模的工作量较大,需要三个人共同协作,缺少一个队员就会拖延整个小组的工作进度;再者数学建模比赛期间学生是比较**的,可以上网,可以和其他人讨论。正是由于这些因素,一旦数学建模的比赛和学生报名参加的其他比赛冲突时,学生立马就会先去参其他项目的比赛,等空闲时间才来参加这个,这就导致了队员缺席,学生缺乏凝聚力,主动退赛等等的情况。因此,建议技能大赛时的数学建模比赛可以放在技能大赛比赛开始的前一个周末,把比赛时长缩短为周末两天,这样既不会和其他比赛冲突,也可以让学生在有限的时间里发挥他们的潜能。

  5.建设一支指导数学建模竞赛的师资队伍。实际上,一个人的知识和视野毕竟是有限的,数学建模的指导教师不但需要有扎实的数学理论基础,还需要有一定的软件编程能力和较强的解决实际问题的能力,俗话说的好“团结就是力量”,因此,必须有一个指导数学建模竞赛的队伍,教师之间必须有很好的沟通,在合作中互帮互助,共同进步,从而促进学院数学建模活动的顺利开展

  6.学院每年选派数学建模指导老师去参加各类数学建模教师培训班,**他们去本市数学建模竞赛**好的兄弟院校去参观学习,交流宝贵的建模经验。同时,学校出台一系列奖励**,在各类大型竞赛中,学院应给获奖的学生一定的物质奖励,并在期末考评,评奖等方面给予优先考虑。

数学建模论文10

  1高等数学教学中数学建模思想应用的优势

  1.1有助于调动学生学习的兴趣

  在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。2.2有助于提高学生的数学素质随着科学技术水*的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的**管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数*用能力与实践能力,进而提高学生的综合素质。

  1.3有助于培养学生的创新能力

  和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数*用能力,培养了学生的创新意识,增强了学生的创新能力。

  2高等数学教学中数学建模思想应用的原则

  在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与**。在实际教学中,不要强求**,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。

  3高等数学教学中融入数学建模思想的有效方法

  3.1转变教学观念

  在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。

  3.2高等数学概念教学中的应用

  在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。

  3.3高等数学应用问题教学中的应用

  对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要**,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。

  4高等数学教学中应用数学建模思想的注意事项

  4.1避免“题海战术”

  数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。

  4.2强调学生的**思考

  在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生**思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。

  4.3注意恐惧心理的消除

  在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的**作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。

  5结语

  总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水*。


数学建模论文10篇扩展阅读


数学建模论文10篇(扩展1)

——数学建模论文实例

数学建模论文实例1

  摘要:现代物流产业是当今新型的经济产业,国民经济建设中,其已几乎扩展到国民经济的各个领域,具有广阔的发展前景和巨大的发展潜力。同时现代物流业具有极强的综合性,因而正确的物流需求预测对于物流产业的宏观**制定,抑或是微观层面的企业规划和经营,都具有指导作用。货物周转量是物流需求非常重要的一项指标,文章结合物流需求的特点,通过货物周转量对具有交通中枢地位的武汉市物流需求影响进行预测。本文运用货物周转量,生产总值两指标,结合2000-2012年武汉地区GDP值,基于双变量线性回归模型方法,对交通枢纽武汉进行物流需求分析预测,以说明武汉未来的物流需求情况。

  关键词:货物周转量;物流需求预测;回归模型

  引言

  21世纪以来,随着经济全球化的发展和网络经济的兴起,现代物流业不断加速发展,其也被誉为“黄金产业”。在我国经济现代化建设中,现代物流业已几乎扩展到国民经济的各个领域,并愈发显示出其广阔的发展前景和巨大的发展潜力,很多占据重要地理位置的地区或省份甚至已将物流产业作为支柱产业或新兴产业列入其地区发展计划。

  武汉,位于*腹地中心,物流资源丰富,全国重要的交通枢纽,素有“九省通衢”之称。其在发展现代物流业方面具有得天独厚的优势,因而武汉提出了以发展物流来实现本地经济的“跨越式发展”,并已通过把现代物流业作为新的经济增长点列入全市发展计划之中。

  然而,作为新型的经济产业,现代物流业具有很强的综合性。无论是在物流产业的宏观决策上,还是物流企业规划和经营的微观层面,都需要以正确的预测为先导。我国经济已由**开放后的经济快速增长阶段进入到中速发展过程中,在经济调整和转型之中,已充分认识到现代物流业的重要性,高效的现代物流业对于地区经济发展或者国家经济进步的支撑作用越来越明显,。因此,在这样的背景之下,以合理的物流需求预测为基础所作出科学的决策,是保证物流产业健康发展的必要措施。

  一、物流需求预测

  物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。

  物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:

  (一)物流需求预测是是物流管理的必要环节

  对物流发展中的各个因素实施**是物流企业进行规划和经营的前提,而这种**需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。

  (二)物流需求预测能够改善物流管理

  物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要**。

  (三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据

  物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。

  二、武汉物流需求的双变量线性回归模型预测

  (一)回归模型的一般形式

  回归分析预测法是一种重要的市场预测方法,其是在分析市场现象自变量和因变量之间相关关系的基础上,来建立变量之间的回归方程,并将其作为预测模型。

  回归模型的一般形式为:

  ; ①

  式①中,X为自变量,Y为因变量, 和 为未知系数, 为误差分量。当然,模型具有实用价值的前提是拟合度良好且回归系数显著。

  (二)回归模型的预测

  1.指标的确定

  货物周转量,是指各种运输工具在报告期内实际运送的每批货物重量分别乘其运送距离的累计数。其不仅包括了运输对象的数量,还包括了运输距离因素,因而能比较全面地反映运输生产结果。其是反映物流业需求的重要指标。

  货物周转量的影响因素很多,通过参考大量文献可知,货物周转量与生产总值存在显著的相关性,综合考虑数据的可查询性,本文选取武汉市**来的货物周转量和生产总值作为变量,进行双变量线性回归模型分析并进行相应预测。

  以货物周转量为因变量,武汉生产总值为自变量。下表是武汉市2000年到2012年的相关原始数据:

  2.回归模型设定

  一般来说,EXCEL和SPSS在预测应用方面均存在各自的优缺点,鉴于此,本文将二者结合起来应用,充分利用SPSS能够准确容易获取预测值,且模型多样化,快速方便的优势以及EXCEL在绘制图形方面简便的特点,,将首先用SPSS进行相关预测模型的选择和预测值确定,再用EXCEL进行预测值绘图,从而简单快速的完成相关预测。则可以设定双变量线性回归模型为: ;其中,生产总值为 ,货物周转量为 。

  用EXCEL作货物周转量和生产总值的散点图,如图1所示:

  3.回归分析

  根据上述数据,通过SPSS19.0统计软件进行线性回归分析:

  4.回归方程有效性检验

  (1)拟合优度的检验

  则从表中可知,相关性系数为R=0.992,相关性明显;同时调整后的拟合系数R2=0.983,说明在货物周转量的总变差中,模型所作出的解释部分达到了98.3%,即模型的拟合效果显著。

  (2)回归参数的显著性检验

  回归方程的显著性检验结果见上表,统计量F=690.815,相应的置信水*为0.000<0.001,结果表明回归方程非常显著;同时常数和自变量系数的回归方程检验的置信水*由表2知为0.000<0.001,即模型的系数显著。 (3)模型预测效果的检验 通过SPSS19.0统计软件得出相应回归模型的同时,将该模型从2000-2012年的预测值保存到数据视图中,如下表所示 从表中可知,货物周转量的绝对误差最大值为215.9195;相对误差最20.34%;*均相对误差为0.89%,可以预见,模型总体预测效果良好。 再从预测值和实际值的曲线图形来比较,将原始数据和预测值数据复制到EXCEL中,利用EXCEL绘图简便的特点,绘制中货物周转量的实际值图形和预测值图形,如下图所示 图2 预测值与实际值的曲线比较 从图中可知,回归预测曲线拟合情况良好,从而进一步证明了回归预测模型的有效性。 四、结论分析 通过对武汉2000-2012年相关数据进行线性回归预测,能够得到如下结论: 第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起0.346单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。 第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济**,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是**物流需求的一个量,并不能完全**物流需求,因而需要根据实际情况适实地对其加以修正。 参考文献[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 2009(09). [2]杨帅.武汉市物流需求预测[J].当代经济.2007(10). [3]汪宇翰.预测物流需求的`一元线性回归分析方法 [J].商场现代化.2006(13). [4]李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.2010(08). [5]张文彤,闫洁.SPSS统计分析基础教程[M]. **:高等教育出版社,2004.


数学建模论文10篇(扩展2)

——数学建模的论文

数学建模的论文1

  摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要**。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

  关键词:数学;数学建模;经济;应用

  经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

  一、数学建模

  数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

  二、经济问题数学模型的建立

  经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存*衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

  三、建模举例

  随着网购的日益普及,诸多电商*台都建立起自己的配送仓库,通过提前库存一定量的商品,达到配送时效短,降低物流成本的目的。如何增强库存的流通,减少库存费用成本,降资金占用,是每个电商所需要考虑的问题。库存过多,导致商品积压、资金占用,且库存费用高:库存过少,导致商品脱销缺货、紧急配送,物流成本高,并且影响销售。如何合理的安排库存量,从而达到合理的动态*衡呢?假设某价值1元的小商品,每次订货综合费用为25元,月需求量为1000件,设需要分x批次进货,为保证不脱销库存量需要保证为每次进货量的一半。并且知道库存保管费用为成本的20%。那么,应当分为几个批次进货,可以在保证货物供应的情况下达到成本最低呢?

  四、结语

  综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。


数学建模论文10篇(扩展3)

——简单数学建模论文

简单数学建模论文1

  利用数学建模解数学应用题

  数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

  一、数学应用题的特点

  我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

  第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事**等有关的应用题等。

  第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

  第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

  第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

  二、数学应用题如何建模

  建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:

  第一层次:直接建模。

  根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:

  将题材设条件翻译

  成数学表示形式

  应用题审题题设条件代入数学模型求解

  选定可直接运用的

  数学模型

  第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

  第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

  第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流*稳,没有突发事件等才能建模。

  三、建立数学模型应具备的能力

  从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的.强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

  3.1提高分析、理解、阅读能力。

  阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

  3.2强化将文字语言叙述转译成数学符号语言的能力。

  将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

  例如:一种产品原来的成本为a元,在今后几年内,计划使成本*均每一年比上一年降低p%,经过五年后的成本为多少?

  将题中给出的文字翻译成符号语言,成本y=a(1-p%)5

  3.3增强选择数学模型的能力。

  选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

  函数建模类型实际问题

  一次函数成本、利润、销售收入等

  二次函数优化问题、用料最省问题、造价最低、利润最大等

  幂函数、指数函数、对数函数细胞**、生物繁殖等

  三角函数测量、交流量、力学问题等

  3.4加强数*算能力。

  数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数*算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

  利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。


数学建模论文10篇(扩展4)

——数学的论文10篇

数学的论文1

  摘要: 如今的新课程教育有一个十分明显的特点就是要改变教师的授课方式和学生的学习模式,试点并发扬以学生为主导,教师起辅助的教学模式,对于初中数学的课堂教学来说,以课堂教学为基点,充分发挥学生的主观能动性,激发学生的现象力和思维能力,是为了适应与时俱进的今天所迫切需要的. 如今的*正在大力提倡学生素质教育的发展和新课程的不断**,而作为全国众多一线初中教师的一员,我们更应该充分的体察学生的学习动态,充分了解到学生们的主观学习方式,并适时创设教学情境,激发学生参与学习的积极性和主动性,使学生参与到学习的全过程中,培养良好积极的学习态度和坚强的学习意志,进而加强学生在初中数学课堂中的自主学习能力,笔者认为,对于学生自主学习能力的培养是,曾强学生整体学习能力的重要分支,也是在目前初中数学教学中的一种重要教学方法。

  关键词: 中学; 数学教学 ; 自主学习

  发挥学生的主观能动性为前提条件下,来培养学生自主学习的能力。要开发学生的潜能和非智力因素,培养创新精神和创造性思维,就要去必须加强初中数学教学过程中学生**、主动、自控性的提升。自主学习的理解不应该只是强调学习自己主动去学习,这是最浅显的看法,最重要的应该是让学生在过程中自我创新、自我发展和实现。而要达到这样的效果,必须要培养自主学习的能动性。本文将探讨教师如何来培养学生的学习个性,发展创新自主学习。

  一、教学观念的转变

  在现目前教育背景下,新课标与传统教学观念不同的点是它教学方法和教学理念都更加科学更加实用。新课标更加强调在教学中给学生更多**发挥的空间,培养自主创新的精神。这便要求教师也要对自己和学生在新课标课改过程中重新定位,充分地贯彻新课标的课改精神,教学方式也要做相应的转变,课堂教学重在以学生为主体,引导学生自主学习。教师在新课改过程中虽然看似只是作为新课改的直接实施者,其实更深入的理解应该是教师应该制定与新课改想符合的教学模式和方法来满足新课改的教学要求。学生在学海泛舟,那教师应该充当领航者和灯塔。我们作为教师应该结合自身学科特点和自身教学经验,并积极探究所谓“探究式学习”的主要意图,才能更好地观测落实新课改的教学理念。通过分析不同学习水*和层次的学生来制定不同的教学方法,才是贯彻了探究式学习的理念,才更有利于培养学生的自主学习能力和兴趣,让学生积极参与学习。

  二、创设情境,激发学生自主探究的兴趣 “数学即生活”

  在数学教学中,因为数学可以来源于生活又是服务于我们生活的,所以教师可以从学生们的知识体验和生活经验开始,创设案例情景,提出贴近生活的数学问题,启发学生将数学思维运用到生活的数学问题中,使生活和数学紧密联系,用数学知识对生活现象进行思考和解释,在学到知识的同时解决生活中遇到的实际问题,这样的话对于引起学生探究兴趣是非常有效的。比如,这样来设计一个问题: 怎样测量一棵树的高度? 在刚刚学习了相似三角形函数知识后,让学生针对各种不同的实际情况设计不同的测量方法。这样一来,学生还可能想到老师可能都没有想到的问题,例如: 树高的话可以考虑勾股定理; 树不高可以采用竹竿; 天气好可以用影子和树高的关系; 没有太阳没有影子; 或者影子被房顶挡了。当然过程中也可能会跑题,需要教师来协调氛围和引导思维。在活跃的课堂氛围中,学生充分发散自己的思维,想尽方法也就达到了自主学习和创新的目的。学生在这个过程中运用了全等三角形、相似三角形的比例关系、勾股定理及三角函数的计算等等方法。学生通过探究式的学习实践,在其中体验、经历、感受,逐渐形成并喜爱上积极的、自主的、生动的实践性学习方式,有效培养自己的学习能动性,客服实际困难,按照自己的办法来设计方案,过程中不仅对所学知识更加熟练,还能产生浓厚的学习兴趣,学习数学的能力便得到提高了。

  三、充分运用开放性问题的教学

  不管是哪种教学方式,包括培养学生自主学习能力都是从实际经验总结的。因此,在教学工程中,我们一定要去重视学生的亲身体验,将学生作为课堂的主体,想尽办法为学生自主学习创造条件,让学生亲自去体会学习,感悟学习,发现学习。不管“1 +3 =3 +1”这种简单的问题,还是测量树高这种生活上的问题,只有让学生自主自发地有了学习数学的热情,学生的思维才能冲出禁锢,各种创新思维和奇思妙想才能突破牢笼。在我讲授等腰三角形性质这一课中,我让学生每人做一张半透明的等腰三角形纸片,把纸片对折,于是两腰就重合在一起了,问学生看到了什么现象? 尽可能多地写出自己的结论。学生通过动手操作、观察、思考和交流写出了如下结论:

  1. 等腰三角形是轴对称图形。

  2. BD = CD ,即 AD 为底边上的中线。

  3. ∠B = ∠C。

  4. ∠BAD = ∠CAD ,即 AD 为顶角*分线。

  5. ∠AD B = ∠AD C = 90°,即 AD 为底边上的高。

  四、培养初中学生的数学问题意识

  要使学生生成自主学习的理念和自主探索的动力,主要源于对新问题的发现,提出和解决。提出发现的问题是基础,不同的学生对同样的问题都有各自的见解,一旦学生提出的问题值得深究,教师对学神的鼓励是十分重要的,这样不仅是学生有勇气去提出问题,更能潜移默化地影响周围的学生; 当然如果学生所提出的问题与教学主线大径相庭,更应该让学生充分的表明自己的观点态度,通过教师的分析讲解引回正题,使学生有更加深刻映像。鼓励式教学对于初中数学课堂的教学起着极大的辅助作用,只要学生经过认真思考,我们就不能轻易地否定。在这基础上教师还应多多发散学生的思维,通过课后的作业研究以及多生活的观察,逐步提升学生的自主学习的能力和创新意识。

  五、结语

  陶行知先生说过: “生活即教育,社会即学校.”可以通过对生活中具体事物的发现寻找来反向论证课堂中的教学思维和方法,同时在整节课堂教学中,教师应重视前后呼应,在课堂中解决问题之后课下再进行反思总结,使学生在反复的总结和回顾当中加深印象,以便以后在此基础上进行思维的发散,进而提升学生**自主的学习能力。

  参考文献

  [1] 张桂芳. 小学数学解决问题方法多样化的研究 [D]. 西南大学,2013.

  [2] 颜章业. 提升初中生自主学习能力的数学学案导学策略研究 [D]. 四川师范大学,2014.

数学的论文2

  一、数学老师要转变传统的教学观念

  素质教育提倡各科教学都要体现出“一切为了学生,为了学生的一切”的观念,基础阶段的教育更是如此。因此,在小学数学教学中,老师应当按照新课程标准的要求,充分体现“学生是教学活动的主体”这一观念,重视培养学生的创新意识,重视学生个性的发展,及其实践能力的提高等。老师作为学生的引路人,新教材的实践者,只有具备与之相适应的新观念,才能充分地、准确地理解新课程的理念,把握新教材的宗旨,领会教材编者的意图,才能使自己在教学工作中做到有的放矢。虽然以学生为主体的理念已经深入到了广大老师的心中,但是在具体的教学过程中,学生主体作用的发挥往往很不理想,主要原因在于多年的应试教育使学生习惯了跟随老师的思维,他们成了学习的机器,只是一味地接受老师的灌输,缺乏主观能动性,更没有创造性。这种习惯与新课程标准倡导的发挥学生的主体性,提高他们的素质是背道而驰的。因此,在小学数学教学中,老师要真正树立学生是教学主体的观念,在课堂上充分关注学生,并尊重和关心他们,营造一个宽松**的数学学习环境,让学生体会到学习数学的乐趣,以最佳的状态投入到数学学习中。

  二、老师要营造发展学生创新思维的教学氛围

  创新是一种较为复杂的脑力活动,它是我们发现新知识、新问题、新方法的过程。在小学数学学习中,学生是创新的主体,没有学生的参与,培养学生的创新能力就像无源之水、无根之木,无从谈起。而在轻松、自然、**的课堂氛围中,学生能够主动参与学习,会产生好奇心,激发自己的求知欲,进而形成创新意识。因此,作为小学数学老师,我们要为学生营造一个**、*等、**的学习环境,让他们在无拘无束的氛围中展开想象、开阔思维,激发创新意识,促进自己创新能力的形成。为学生营造创新学习的课堂气氛需要老师从以下几点做起,首先,要建立*等**的师生关系。传统的小学数学教学中实行的是“老师讲学生听”的模式,老师是课堂的主角,学生只能是配角和观众。新课改下的小学数学课堂应当打破师道尊严的模式,要充分尊重学生,以*等、宽容的态度对待每一位学生,充分体现学生的主体地位,在这种宽松**的氛围中,学生能够无拘无束,并能充分发挥自己的.聪明才智和创新能力。其次,老师要为学生营造充分的思维空间和时间。传统的以老师为权威的教育教学方式严重阻碍了学生思维的发展和创新性,因此新课改下的小学数学课堂,需要老师把自己放在指导者的位置,引导学生主动学习,鼓励他们大胆发表见解,互相交流思想,进而激活自己的创新思维,促进创新能力的发展。

  三、鼓励学生探索多种解题思路

  在小学数学教学中,要想使学生的创新能力得到培养和提高,其前提和基础是要充分发挥学生的发散思维,鼓励他们从不同的角度进行观察和实践,探索多种解题思路,激发他们的创新思维。数学知识来源于生活,也将运用于生活,培养学生解决实际问题的能力是教学的目标之一,因此在小学数学教学中,老师要注重培养学生“举一反三,由此及彼”的能力,即让他们通过解决一个数学问题,就有能力通过这种解题思路和方法解决其他类似的问题,进而提高他们分析和解决问题的能力,达到学以致用的目的。所以说,数学老师应当提倡和鼓励学生提出不同的见解和想法,提出多样化的解题思路。另外,要想让学生提出不同的见解,需要老师的科学引导,对此,老师可以在教学中多设置一些问题和悬念,层层递进,引导学生逐步深入地进行探索,激发他们的创新思维,使学生在自主探究的学习过程中实现创新。

  四、通过老师积极的评价和鼓励引导学生不断创新

  每个学生的学习能力、接受水*都不相同,因此,同一个班级的学生学习同样的内容会有不同的表现,这就要求我们小学数学老师要认识到学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。在数学课堂教学中,老师应及时对提出的问题进行反思,若一连几名学生均未答出,表明问题可能难了,或者几个学生均是一个层面水*,那就应采取调控措施。如果问题有难度,就应把问题分解或换个角度,降低难度;如果不是问题有难度,那就应该让不同类型的学生回答,并讲究一下回答顺序,这样,在同一个问题的答问中,不同差异的学生都能受益。同时,老师在分层教学过程中,要及时了解并尊重学生的个体差异,积极评价学生的创新思维,对有困难的学生,及时给予关注与帮助,鼓励他们主动参与教学活动,尝试用自己的方式去解决问题,发表自己的见解。对他们的点滴进步,及时肯定,对他们出现的错误,耐心地引导,鼓励学生自己去改正,增强他们学习教学的信心,进而提高他们的创新能力。综上所述,作为小学数学老师,我们应当以新课程标准的要求为指导,创设良好的学习氛围,鼓励学生质疑,并对学生的学习做出恰当的评价,促进他们创新能力的发展。相信通过我们老师的共同努力,一定能培养出符合新时代要求的具有创新能力的人才。

数学的论文3

  一、数学活动要符合小学生的认知规律

  数学活动区别于其他活动的主要特征之一就是数学化。小学数学教学要从学生的现实世界(已有生活经验与常识)中选择直观形象的素材,运用符合“形象—表象—抽象”认知规律的活动方式,让学生亲身经历从自己熟悉的现实世界中抽象概括出数、量、形、式。例如,教学“最小公倍数”。如果用长3分米、宽2分米的长方形墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?有以下两种不同的活动设计。活动一,用教师给大家提供的长方形纸片摆一摆,算一算正方形的边长可以是多少分米?最小是多少分米?活动二,提出问题后,教师引导:请你们想一想要用什么方法帮助我们解决这个问题?活动一只是让学生做手工与算术,没有激起数学思考———发现拼出的正方形边长与2和3之间的关系,也就是说活动过程没有数学化,所以这样的活动不是有效的数学活动。活动二首先让学生自己设计活动方案,然后通过活动把生活问题数学化———发现摆出的正方形边长既是2的倍数又是3的倍数,叫作它们的公倍数,其中最小的一个数6是它们的最小公倍数。设计二能激发学生的数学思考,把活动经验**化、结构化,建立公倍数和最小公倍数的概念,这才是有效的数学活动。

  二、数学活动要蕴含丰富的数学教育价值

  1。数学活动要揭示数学概念的来龙去脉

  小学生的数学学习主要从生活经验出发,在现实生活中寻求概念的原型,通过观察比较、归纳概括等活动抽象出概念的内涵,通过问题解决体验数学概念的外延及应用价值,通过反思总结把自我建构起来的概念纳入已有的认知系统中。例如,“比例尺”的教学,可以通过“画教室的*面图和画手机芯片设计图”两个活动,引导学生自主确定图上距离和实际距离的比,并用人们能读懂并且熟悉的形式表示出来,从而感悟比例尺的意义和使用价值,在沉淀知识的同时学会创造。

  2.数学活动要渗透数学思维方式的培养

  数学的基本思想是指抽象、推理、建模等思想,在具体的数学活动中反映为数学的思维方式,主要有:观察与实验、比较与分类、类比与推理、分析与综合、抽象与概括、归纳与演绎、想象与联想、猜想与验证、特殊化与一般化等,其中概括是数学思维方式的核心。在数学活动中培养科学的数学思维方式,可以帮助学生轻松地思考数学问题,感悟数学知识,形成解决问题的能力。例如,“称”的活动在小学数学活动中至少用过6次,它所蕴含的数学思想方法和思维方式却各不相同。二年级“克与千克的认识”通过“称”进行观察与实验,直观感知1克与1千克的质量,形成对克与千克的抽象认识;三年级“数学广角———等量代换”通过“称”进行替换推理,感悟等量代换的思想;五年级“综合实践———量一量%找规律”通过“称”,用单位长度的线段来刻画物品的质量,感悟函数思想,培养归纳推理能力;五年级“方程的意义”用“称”建立等式的数学模型,渗透方程思想;五年级“数学广角———找次品”通过“称”进行排除推理,感悟从特殊到一般与优化的思想;六年级“综合应用———有趣的*衡”,通过“称”发现竹竿的两边塑料袋中放棋子的个数和刻度的积相等,感悟函数思想。

  3.数学活动要积累丰富的数学活动经验

  数学基本活动经验的内涵一般包含三个方面:即学生在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识。数学活动要利用好来自感官知觉的体验,在行为操作的基础上进行思维操作,在**思考的基础上开展*等交流与反思评价,抽象概括数学知识,总结提升思维策略,交流分享体验感受,最终形成自己的活动经验。例如,“小数的意义”中“0.1表示十分之一”的教学过程。1角是0.1元,1角也等于110元,这些都是学生的常识,稍加点拨即可唤醒,这时要开展的思维活动应是:根据等式的传递性也就是等量代换的思想进行推理0.1元=1角,110元=1角,所以0。1元=110元即0。1元表示110元;同样的推理可以得到0.1米=110米即0。1米表示110米;再进行归纳和抽象,建立数学模型———0.1表示110。“0.1表示十分之一”的教育价值自然不如经历探究“0.1为什么可以表示十分之一”的活动过程留下的活动经验的教育价值。小学数学课堂教学只有在数学基本思想的指导下,引导学生运用数学的思维方式开展认知活动,才能帮助学生在原有认识的基础上产生新的、更精彩的观念,获得继续学习的能力,萌发创新意识与创新能力。

数学的论文4

  1、结合小学生思维的特性,实施直观化的教学

  这重点涵盖语言直观(通过形象生动的语言对事物进行描绘,激发学生固有的感性体验)、图表直观、模拟直观,实物直观。教师能够结合教学的要求,创设一定的教学情境与氛围,让学生迅速地进入角色,产生情感认知。例如,教师在指导学生认知圆的时候,能够为学生设计两只小熊骑自行车比赛的教学情境,其中,一只小熊骑着圆形轮胎的自行车,而另外一只小熊骑着三角形的自行车轮胎。教师要求学生猜测哪一只小熊的骑得更快,并且说明原因。学生仅仅可以通过直观进行猜测,并且学生也大都充满了疑问。在这个时候,教师在多**大屏幕上呈现这两只小熊比赛的情境,结果甲猴轻松地取得了比赛的胜利,而乙猴却被远远地甩在了后面。此时,教师启发学生探究出现这种现象的原因,进而调动了学生的学习兴趣,让学生明确了圆的一些特性,且为学生更进一步地认知圆奠定了较好的基础。教师设计这样的教学情境,激发了学生的探究欲望和好奇心理,有利于教学的顺利进行。

  2、**数学学习课外实践活动,更进一步地激发学生的情感

  作为教学课堂的补充与继续,课外实践活动的有着极大的重要性。日常学生的学习主导是间接性的经验,对学习的数学内容缺少真正的体会。课外实践活动的目的是为了提高学生通过数学知识对实际问题进行解决的能力与意识,它属于素质教育的组成部分,也是培养学生综合素质和能力的有效方式,也属于情感教育得以实施的良好*台。课外活动有着非常多的形式,像是建立数学活动学习小组,以使学生对信息进行收集,开展数学智力竞赛和讲解数学故事一系列充满趣味性的故事,以使学生感受到学习的乐趣,以及组建数学学习乐园和开办数学手抄报等等,借以激励学生对数学资料进行查询和对数学书籍进行阅读,主动地将自身实际生活当中的发现和研究成果编进手抄报或者是数学乐园当中去,在编撰的时候,应当注重绘图、设计、编排和选文,以使学生切实感受到欣赏美和创造美的乐趣所在,还能够激励学生积极主动地写数学日记,通过自身的语言发表自身学习数学知识的情感感受、思想、态度等,以使学生将自身的进步和快乐记录下来,获得成功的情感感受,提高学习的自信心,要么是对自身的挫折和困难进行记录,畅谈心中的失落和伤感,进而对自己的心态进行及时地调整,收获战胜困难的方法。这一系列的数学课外实践活动把学生的数学探究活动和数学学习活动都向课堂外渗透,这不但使得学生的数学知识得以丰富,也从多个视角有效地培养了学生的数学学习态度以及情感。

  3、结语

  综上所述,当今的教育需要是充满智慧的教育,学生的进步和发展可能会超过我们预计的范畴,这是由于学生都是有血有肉的。作为广大的小学数学教育工作者们来讲,在为学生讲解数学知识的和提高学生数学能力的时候,更加需要关注学生的情感世界,只有如此,才可以增进教师和学生间的交流,最终建立**的师生关系,从而为提高课堂教学效率和教学质量服务。

数学的论文5

  课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

  一、小学数学课堂教学设计中认知能力培养的现状与问题分析

  (一)小学数学课堂教学设计认知能力培养的现状

  创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地**课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

  (二)小学数学课堂教学设计认知能力培养存在的问题

  在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多**教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水*进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

  二、小学数学课堂教学设计中认知能力培养方法的创新方向

  (一)教学思维方式的创新

  思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度**影响学生的思维水*。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下**自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

  (二)在课堂教学设计中科*用认知能力培养方式

  小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水*和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

  (三)认知能力培养要多与生活实际相联系

  小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1。学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2。班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少*方米的地板?如果一*方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生**验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

  (四)注意观察学生的反馈

  无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水*的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

数学的论文6

  一、优化教学模式,改进教学方法

  1、用好教材,强调数学的应用性与趣味性

  不少数学学困生都认为,数学知识是枯燥无味的,是没有什么实际应用价值的,所以无法喜欢数学。为此,在教学过程中,教师应改变传统的、单调呆板的教学模式,不能只会教教材,还要根据教材内容创造性地开展教学。比如在探究《矩形的判定》这课的时候,教师可创设如下问题情境:教师出示一块矩形小铁片,并提出问题———某公司的林老板想招聘一名质检员,他拿出老师手中的这个四边形零件,问正在参加应聘面试的陈华:假如现在你只有一把刻度尺作为工具,你能检测出这个四边形零件是否为矩形零件吗?若能,该如何检测呢?让学生猜测、讨论片刻后,教师告诉学生,陈华利用他初中所学的数学知识很快就回答出了这个问题,面试顺利过关。再问学生是否想学习陈华解决这个问题所用到的知识?这样引入新课,学生马上会感觉到学习矩形的判定有趣又有用,可以**激发学困生的求知欲和好奇心。在学习用*方差公式分解因式时,若只讲解教材提供的内容,很多学生都会觉得学这些内容没意思,也没啥用。教师可先出示一道题:口算1532—1522,问学生能否口算出结果,学生感到疑惑时,教师立刻说出答案并请学生检验是否正确。甚至还可以选一些更复杂的题进行快速口算,让学生感到吃惊和好奇,这时告诉学生本节课所要学习的新知识。这样让学生体会数学知识的应用性与趣味性,使学困生对学习数学知识的兴趣倍增。

  2、体现主体,促进学困生主动获取新知

  数学教学是学生在教师的指导下能动地建构自己的数学认知结构的过程。如果在课堂上教师条分缕析地“讲”、事无巨细地“灌”,学生只能一次一次地听、一条一条地背,那么学生一定会无比厌烦,当学生面对新知识时,他们依旧很“受伤”。因此,教师应避免“满堂灌“”***”,要让学生真正成为学习的主人,让学困生主动参与到教学活动中去,唤起他们沉睡的学习热情。比如,让学生在**思考的基础上开展小组讨论交流活动,把自己的想法说给同学听,互相纠正、互相补充。学困生在这个时候往往会表现得更主动,更能得到锻炼。在学习小组内开展互帮互助,让学习好的学生多帮助学困生,检查学困生做的基础练习,并帮助他们解决练习中碰到的问题。这样,学生在学**获得了真正的**,正像某些学困生说的“我在与同学交流时,就觉得更**、更放松、更容易理解新知识”。有些数学知识可以通过动手操作的方式获得,学生通过亲自动手操作,协同大脑主动思考,对知识的理解更透彻、记忆更深刻,更有利于提高学生的逻辑思维能力。比如在探究三角形的三边关系定理时,教师先安排学生准备一些长短不一的小木棍(规定木棍的长度),课上让学生自己动手围三角形,想想怎样的三根小木棍才能围成一个三角形?(对于学困生还可以作适当的提示:围成一个三角形的三根木棍中,较短的两根木棍长度之和与最长的木棍长度作比较,你发现了什么?)为什么会出现用三根小木棍无法围成三角形的情形?在这个过程中,学生自然而然地理解了三角形三边关系定理的内容。

  二、加强学法指导,提升学习能力

  农村初中数学学困生缺乏数学学习策略,不会对信息进行加工储备,不会反思调控自己的数学认知过程与方法。教师应在为学困生补缺补漏的过程中,以数学学习中问题的解决为载体,让学困生逐步认识数学思维活动的特点,掌握较多的基本学习方法和学习技能。比如教师要指导学困生养成课前预习的习惯,简单的问题课前解决了,课上就集中精力解决重点、难点问题;指导学困生记好课堂笔记,**他们**完成作业,坚持课后复习,及时系统小结;引导学困生通过分析、综合、类比、概括,揭示知识间的内在联系,可利用图形、表格、知识树等形式,使学生将所学知识形成框架结构,便于理解和掌握……这样,学困生的学习能力会逐渐提高,会感到数学越来越好学,慢慢地喜欢上数学。

  三、结语

  总之,初中数学学困生的转化是一项十分艰巨、长久的工作,需要教师给学困生多一份尊重和关爱,多一些学习方法的指导,也需要教师优化教学模式,改进教学方法,让数学学困生喜欢数学,进而让数学学困生学好数学。当然,随着社会的变革与进步,学困生的成因与转化策略也会不同,新时代的教师应该及时更新自己的教育理念,关注学困生的成长,最终为社会培养更多优秀人才。教育随笔。

数学的论文7

  研究的理论依据。

  《初中数学新课程标准》中指出:数学教学活动必须建立在学生的认知发展水*和已有的知识经验基础之上。学生是数学学习的主人,教师是数学学习的**者、引导者与合作者。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水*,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我。

  在总体目标指出:通过义务教育阶段的数学学习,学生能积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的.体验,锻炼克服困难的意志,建立自信心。

  研究的现实背景。

  学生在学习活动中存在这样一种事实,就是不同层次的中学生对学习数学存在着不同程度的学习困难,直接影响着学生对学习数学的兴趣,更不必谈好奇心与求知欲,也无法建立自信心,制约着学生在数学方面的提高与发展。

  **教育科学研究院**的 **2015学习障碍国际研讨会 中指出:根据**教科院学习障碍研究中心最近对**部分地区中小学校进行的抽样**显示,10%左右的学生认为自己存在不同程度的学习困难。这些孩子智力正常,但学业成绩不良,专家指出,他们需要特别的帮助数学论文开题报告范文数学论文开题报告范文。这部分学生会与同龄人在学**拉开差距。是哪些非智力因素导致了他们学**的障碍?这些非智力因素的出现影响着中学生对数学得学习,因此,对中学生数学学习困难**与分析的研究很有必要。

  研究对象与范围。

  研究对象界定:本校中学生(农村中学)。

  关键概念界定:数学学习困难(对数学学习态度不良,目的不明确、呈现一种漫无目的的学习倾向,缺乏学习热情和自觉性、自制性和坚持性差)。

  研究的内容:

  ⑴学生能力影响数学学习困难的**。数学基础情况如何?课前是否预习?预习效果如何?课堂上***是否集中?听课效果如何?课后作业是否**完成?作业质量情况如何?课外习题是否主动完成?

  ⑵学生自身认识影响数学学习困难的**。学生的学习目标是否明确?学习态度是否端正?受某些不良因素影响,能否树立正确的学习价值观?有无对学习数学的情感?

  ⑶教师的教学方式影响学生数学学习困难的**。教师是影响学生对一门学科是否感兴趣的首要因素。教师如何对待数学学习困难的学生?如何衡量数学学习困难生的发展?如何衡量数学学习困难生的学习方式?如何衡量数学学习困难生的学习能力?

  ⑷学生家长认识影响学生数学学习困难的**。家长认同的成才标准是什么?家长对孩子的期望值多高?家长如何认识 读书无用论 ?家长如何看待孩子的数学成绩?

  ⑸社会环境影响学生数学学习困难的**。网络游戏对学困生的影响。打工热潮对学困生的影响。

  研究的方法和途径。

  观察法、**法、经验总结法、观察法。

  (1)确定观察的目的。在校期间,学生学习数学的举动。

  (2)确定观察对象。部分中学生。

数学的论文8

  数学的好处不胜枚举,古今的科学家也都有指出。19世纪数学家J.J.西尔维斯特指出:“置身于数学领域中不断地探索和追求,能把人类的思维活动升华到纯净而**的境界。”当代数理逻辑学家王浩先生也说,数学具有纯净的美。J.阿巴思诺特说:“数学知识使思维增加活力,使之摆脱偏见,轻信和迷信的束缚。”W.E.塞劳尔说:“正如文学诱导人们的情感一样,数学则启发人们的想像与推理。”总之,数学能令你的思维纯净,**,会为你的思维增添活力。它赋予你想象的翅膀,为你开通推理的渠道。数学是被我们运用在实际生活中的,它教我们去识别一些东西,教我们如何才能取得利益。有时候数学还能帮我们认清欺骗,甚至创造欺骗。有不少的同学也许试过电脑算命,可能还曾信以为真。“电脑算命”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。

  其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。 抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果,运用同样的推理可以得到: 原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。 如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦! 在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的抽屉数为60×360×12=259200。

  所谓“电脑算命”不过是把人为编好的算命语句象中药柜那样事先分别一一存放在各自的柜子里,谁要算命,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。商业中的欺骗也是离不开数学的。阿凡提就为我们做了最好的说明。古尔邦节快到了,天山南北充满了节日气氛。集镇上,车水马龙,热闹异常。店铺里、道路旁、地摊上,到处都摆满了货物,琳琅满目,应有尽有。水果商们把贮藏保鲜的苹果、葡萄、雪梨、石油、哈密瓜一并搬了出来,希望卖个好价钱。 这天晌午,阿凡提忙完了半天的活计,也骑着毛驴赶集来了。阿凡提以聪明能干、正直仗义闻名遐尔,谁个不认识?一路上,他不住地和熟人、朋友打着招呼。忽然,听见有人高喊他的名字,阿凡提回头一看,原来水果店老板艾山。此人奸诈贪婪,不仅常用假冒伪劣商品坑害顾客,还专门放剥削百姓,是个人人痛恨的坏蛋。阿凡提早就想教训教训这家伙,可就是没有遇上机会。这时艾山正拿着秤杆坐在两大筐葡萄跟前发愣。一筐是紫葡萄,标价为2元1斤;一筐是青葡萄,标价为1元2斤。只是问的人多,买的人少。 “阿凡提大哥,如今做点生意真不容易呀。您看,我在这捱了一上午,还没卖出几斤葡萄,现在紫葡萄和青葡萄都还剩下60斤,不知要卖到何时呢!”艾山其实想央求阿凡提帮他出个推销葡萄的点子,又不好意思说。

  阿凡提听出了弦外之音,心想:这家伙正好送上门来,使个办法叫他亏点钱吧,也让大伙儿出口气。就来到水果摊前对艾山说:“啊,艾山老弟,你可真笨!紫葡萄虽甜,但价格贵,青葡萄虽便宜,却味道酸。何不把两种葡萄掺在一起,按3元3斤出卖,也就是每斤1元,这样不是既好卖又省事吗?” 艾山一听顿时眉开眼笑,连忙竖起大拇指称赞道:“阿凡提大哥真是聪明,名不虚传,名不虚传!”于是艾山按阿凡提的办法出售葡萄,果然买的人多了起来,不多时,120斤葡萄卖光了。

  可是,当艾山清点卖得的钱数时,不由得皱起了眉头:如果按照原来的价格卖,紫葡萄应该卖2元×60=120元,青葡萄应该卖1元×(60÷2)=30元,一共应该能卖到120元+30元=150元,可现在卖得的钱却只有120元,怎么少了30元呢?他猫腰瞪眼在葡萄摊前转来转去,找遍了每个角落,也不见丢失的30元钱。最后才悟到是让阿凡提给捉弄了。当他想追上阿凡**个明白时,阿凡提早已骑着毛驴走得无影无踪了。

数学的论文9

  课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

  一、小学数学课堂教学设计中认知能力培养的现状与问题分析

  (一)小学数学课堂教学设计认知能力培养的现状

  创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地**课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

  (二)小学数学课堂教学设计认知能力培养存在的问题

  在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多**教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水*进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

  二、小学数学课堂教学设计中认知能力培养方法的创新方向

  (一)教学思维方式的创新

  思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度**影响学生的思维水*。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下**自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

  (二)在课堂教学设计中科*用认知能力培养方式

  小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水*和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

  (三)认知能力培养要多与生活实际相联系

  小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1.学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2.班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少*方米的地板?如果一*方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生**验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

  (四)注意观察学生的反馈

  无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水*的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

数学的论文10

  摘要:小学数学不会自发产生与现实生活的联系。运用数学知识和方法解决一些简单的实际问题,需要采用切实可行的方法。本文围绕小学数学生活化策略展开,旨在进一步拓宽小学数学教学思路,创新教学方法。

  关键词:小学数学生活化策略研究

  数学作为小学生感知世界的重要方式,不会孤立于生活之外产生作用,也不能从教材和课堂教学中与现实生活自发产生直接的联系。显然,对《数学课程标准》的解读,不能只是明确“使学生感受数学与现实生活的密切联系,是学生初步学会运用所学的数学知识和方珐解决一些简单的实际问题”。而是要从这样的教学目标定位中,寻找切实可行的方法。如何真正让数学贴近学生生活,让数学与学生生活触觉碰撞和交融,让他们真正的在生活中学数学,在学数学中了解感触生活,这是数学教师应该探究的课题,笔者认为这些问题的解决需要我们数学教师采用生活化教学策略。因此,笔者结合长期的小学数学教学实践和当前教改的要求。提出以下设想以求教于方家。

  一、依托教材,促进学习材料生活化

  数学教学生活化是指数学课堂教学与学生实际生活相联系,把数学知识转化为学生的实际生活情境,在实际生活情境中学习数学的一种教学方式。这里所指的学生实际生活并不单是单纯学生生活情境在数学课堂教学中的完全再现,而是一种数学化的生活情境。小学数学教材是实现课程目标、实施教学的重要资源,也是进行学习活动的基本线索。学习材料生活化可以依托现行教材,加强“书本世界”与学生“生活世界”的沟通,改变数学学习生活苍白无为的状态。和许多研究者的认识一致的是,目前小学数学教材内容仍然缺乏时代气息和生活色彩,缺少学生喜闻乐见的内容。学习材料生活化就是要切合学生生活实际。将数学学习材料的呈现方式多样化,激发学生的学习兴趣,鼓励学生积极思考、合作交流,丰富学生的情感体验。建构属于学生自己的数学知识体系。

  例如在教学“百分数”一般应用题时,笔者这样重组材料:一是收集信息。上课一开始就请学生描述学校周边道路环境状况。二是选择信息。在学生所列举的众多信息中选择出一条“为绿化道路环境,在校外公路栽种树木,一共栽了500棵,成活了490棵,让学生提出数学问题。三是自主探究。学生提出问题中很多是学生已知领域,让学生自己解决。四是教师引导。告诉同学们“这批树木的成活率是98%。”从而**“成活率”和“98%”的含义,让同学们先**思考后小组交流讨论。这样重组,贴近学生所关注的现实生活,学习材料来自师生的熟知信息,体现了生活数学的现实性。这样就能很好地解决“死知识”适应“对话教学”之间的矛盾。因此,教师在教学中要善于处理教材、调整教材。重组教材内容,给数学课本增加“营养”。让教学根植于生活,将枯燥乏味的教学内容设计成生活中看得见,摸得着、听得到的有价值的案例,从而适合学生发展的数学学习过程,让学生真正感受到数学的魅力。体验到学数学的乐趣。

  二、运用数学知识,分析现实问题

  数学知识最终服务于生活,回归于社会生活。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到现实生活中去,解决身边的数学问题,以体会数学在现实生活中的应用价值。我积极鼓励学生收集、整理、加工生活中的数学问题,获得解决简单实际问题的活动经验和方法,感受到生活与数学知识间的联系,不断提高他们的数学应用能力。

  数学教学不应该是个只注重求知过程、只注意引导学生学习数学知识、训练数学技能,而应该积极引导学生用数学的眼光观察世界、认识世界、掌握分析问题的方式方法。在学生学习数学过程中,教师要尽可能使每一个学生拥有一双能用数学视角观察生活的眼睛,让学生带着数学问题接触实际。加深对数学问题的理解,进而懂得身边处处有数学。数学总能找到与人和现实生活的联系,抓住了联系,就能把活学到的知识进行活用。但这种思维习惯也需要我们一步一步地培训。如学习比例应用后,我们设计了一个将配液加水或加盐的实验操作活动:“要把10%盐水50千克,配制成20%的盐水。该怎么办?学生通过精确计算,动手测量得出使盐变多(加盐)或使水变少(蒸发)的规律。再如在学习“百分数意义”后,我出示了这样一道题让学生进行思考:我们班有30%左右的学生在家使用电脑上网,其中2/3的学生是利用网络进行学习,而1/3的学生却在玩网络游戏。看到这一现象,谈谈你的看法。这样让学生用学到的数学知识去思考、解决身边的问题,在课堂教学中渗透了思想教育。适当地进行一些小学生日常行为规范的养成教育,使学生自觉地把所学到的知识与现实生活中的事物联系起来,培养学生用数学的情感,培养学生把所学到的知识运用于实际的意识。

  三、关注日常生活,捕捉学生的兴趣点

  数学来源于生活,生活中处处有数学,到处存在数学问题。数学的身影在生活中每个角落,数学的价值来自日常生活。数学教学重视学生的生**验,把数学问题与生活情景相结合。通过生活问题的解决达到巩固数学知识,提高数学技能。技巧的目的。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在日常教学中,教师要善于引导学生观察生活中的实际问题。感受数学与生活的密切联系,拓展学生认识数学,发现数学的空间,重视学生对数学体验的积累。让学生在数学知识之前尽早感受这种做法,在课堂中往往能收到事半功倍的效果。例如,教学厘米、米等长度单位时,可以从比高矮实际事例人手使学生明白了长度单位对于精确测量的意义,再让学生通过测量工具认识这些长度单位。然后动手测量图钉的长度、食指的宽度、书本长度、*伸两臂的长度、给爸爸妈妈测量坐高,黑板的长度、教室的长度等。

  这些知识是学生喜闻乐见、易于接受的,在不知不觉中学习了数学,让学生深切的体会到了原来数学就自己的身边,身边就有数学,数学不再是抽象,枯燥的课本知识,而是充满魅力与灵性。与现实生活息息相关的活动。同时也增强了数学的亲和力,激发了学生学习数学的积极性和主动性,使课堂教学焕发了生命的活力。

  四、学以致用,注重解决实际问题

  学习数学最终目的就是要把学到的知识应用到实际生活中去。教师要千方百计地创造生活情境,让学生运用所学的知识和方法研究、探索,解决一些简单的实际问题。不但可以帮助学生增进对知识的理解,了解知识的价值,而且可以增强学生学习和应用数学知识的信心。例如,在讲授“利息”的知识点后,笔者安排了这样的课外作业“自己做一次小小会计员”,让学生去银行了解现在的利率,然后让他们把积攒的零用钱存起来,怎样存最合算?这样的作业学生极有兴趣。在这一系列的**、分析、计算、反复比较的实践中,学生对利率、利息这一知识的理解更为深刻。而且此次活动。还可以是对学生不乱花钱的思想教育,实现教知识和育人的**。这样联系实际的教学,将学生在课堂中学到的知识返回到生活中,又从生活实践中弥补课堂内学不到的知识。自然满足了学生求知的心理愿望,产生了强烈的教与学的共鸣,同时在生活实践中学会了解决问题。

  综上所述,实施小学数学教学生活化策略必须能符合学生的认知规律。注重知识的形成过程,注重学生能力的培养,能引导学生把数学知识运用于实践,符合素质教育的要求,使学习变得通俗、有趣、生动,使数学教学实践变得更有活力。


数学建模论文10篇(扩展5)

——数学教学论文5篇

数学教学论文1

  摘要:长期以来,数学教学**偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津。现代教学理论认为,教学方法包括教的方法和学的方法,正如前苏联教学论专家巴班斯基指出的那样:“教学方法是由学习方式和教学方式运用的协调一致的效果决定的。”即教学方法是受教与学相互依存的教学规律所制约的。为此,笔者在教学方法上进行了如下尝试。

  关键词:初中数学;课堂教学;学习兴趣

  一、让学生成为课堂的主人

  ***陶行知先生提倡“行是知之始,知是行之成。”人的能力并不是靠“听”会的,而是靠“做”会的,只有动手操作和积极思考才能出真知。因此,我们不能让学生在课堂上做“听客”和“看客”,要让学生做课堂的主人,动口、动手、又动脑,亲身参与课堂和实践,包括知识的获取、新旧知识的联系,知识的巩固和应用的全过程。要强调凡能由学生提出的问题,不要由教师提出;凡能由学生解的例题,不要由教师解答;凡能由学生表述的,不要由教学写出。数学课堂不再是过去的教师“***”,教师在教学活动中应主动参与、积极引导、耐心辅助,与学生*等合作、努力探研,充分发挥教师的主导作用,真正地把学生**出来,使学生真正成为课堂上的主人。

  二、营造宽松的课堂气氛

  要想学生积极参与教学活动,发挥其主体地位,必须提高学生的主体意识,即学生对于自己学习主体地位、主体能力、主体价值的一种自觉意识。而要唤醒和增强学生的主体意识必须营造*等、**和**的课堂气氛。一个良好的课堂气氛,能促进师生双方交往互动,分享彼此的思考、见解和知识,交流彼此的情感、观念与理念,能真正把教师转变为学习活动的**者、引导者、合作者,把学生转变为真正学习的主人。营造宽松的课堂气氛,必须用“情感”为教学开道。夏丐尊曾经说过:“教育之没有感情,没有爱,如同池塘没有水一样;没有水,就不成其为池塘,没有爱,就没有教育。”所以教师首先要爱生,这种爱是多方位的。既有生活上关怀学生的冷暖、喜恶之爱,更有学***解学习情况,填补知识缺陷,挖掘学生身上的闪光点,多鼓励,而不轻易否定,恰当指引,想学生所想,急学生所急。这样才能让学生真正感到老师既是良师,更是益友。

  三、在数学教学中培养学生学习数学的兴趣

  新教材章节的安排呈专题的形式,并增加了许多活动课内容,十分有利于激发学生的学习热情,也有利于开发学生的创造思维能力。在教学过程中可通过新增设的“读一读”、“想一想”、“试一试”、“做一做”等栏目,结合教学内容并辅以一些与现实生活紧密联系的知识,锻炼学生动手实践、自主探索、合作交流等能力。

  利用“读一读”可以激发学生的学习兴趣,让学生感受到学以致用。“数学来源于实践,又反过来作用于实践”,只要我们在教学过程中注意创造合适的情景,使抽象问题形象化、具体化,学生学习由外而内、由浅入深、由感性到理性,使学生不断产生兴趣。新教材的“读一读”里安排了一些与数学内容相关的实际问题,既可以扩大知识面,又能增强教材的实用性。

  利用“做一做”,指导学生动手操作,从中体会学数学的乐趣。多年来,由于“应试教育”的桎梏,学生学得苦,教师也教得苦,到头来学生只会依样画葫芦地解题,而动手制作和应用知识的能力却相当低下,更谈不上开动脑筋发挥创造性,“应试教育”严重地束缚了学生个性的发展。充分使用新教材中“做一做”的内容,指导学生利用硬纸、木条、铁丝等材料制作一些简易的几何模型,可以激发学生的学习兴趣,提高学生的动手操作能力,培养学生的思维能力和空间观念,有利于全面提高学生的数学素质,体现了课程标准的要求:“能够由简单的实物想象出几何图形,由几何图形想象出实物形状。”

  利用“想一想”,开发学生的思维、培养学生的学习兴趣。新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。

  利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。

  在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。

  四、鼓励学生合作交流

  为了促使学生合作交流,在教学**形式和教学方法上要变革,由原来单一的班级授课制转向班级授课制、小组合作学习多种教学的自制形式。教师可指导学生在小组中从事学习活动,借助学生之间的互动,有效地促进学生的学习,并以团体的成绩为评价标准,共同达成教学目标。在教学中,应注意如下几个方面:首先,合理分组。为了促进学生进行小组合作学习,首先应对全班同学适当分组。分组时要考虑学生的能力、兴趣、性别、背景等因素。一般讲,应遵循“组内异质、组间同质”的原则,保证每个小组在相似的水*上展开合作学习。其次,明确小组合作的目标。合作学习由教师发起,教师不是合作中的一方。这种“外部发起式”的特征决定了学生对目标的理解尤其重要。只有理解了合作目标的意义,才能使合作顺利进行。因此,在教学中,每次合作学习,教师大致应明确提出合作的目标和合作的要求。

  总而言之,新课改背景下的中学数学课堂不再是封闭的知识集中训练营,不再是单纯的知识传递,课堂上我们的学生自主学习,合作探究,思维得以飞扬,灵感得到激发,我们的课堂越加变得春光灿烂,精彩纷呈。

数学教学论文2

  随着我国课程**工作的不断开展,小学数学学科的教学工作也已经有了很大的改变,如今我国小学数学教师将生活情境运用在教学工作中的各个方面对学生进行教学,一方面可以使学生对数学知识的实用性有所认识,另一方面教师可以通过生活情境的运用让学生对数学知识更好的理解,从而使学生成绩及综合素质得到提高。数学学科是从现实生活中提炼出来的,因此小学数学教师在对学生进行教学时,可以将生活情境运用于教学工作中,从而让学生能够运用数学知识解决生活中的问题。基于以上内容,教师需要将教学工作和生活建立更多联系,对学生已有的生活经验进行最大限度的利用,学生便可以对抽象数学知识进行更好地理解,而教师通过生活情境的运用可以对学生创新及探究能力进行培养。下面我将就运用方面教学工作进行分析。

  一、将生活情境运用于例题教学

  小学数学教师在对学生进行教学时,通常会通过例题向学生讲授知识点,基于以上情况,我国小学数学教师可以将生活情境融入到例题中,从而使学生对例题题意更容易理解,并能够在轻松愉快的氛围中习得数学知识。例如,教师在对“比一比”的相关知识进行讲解时,可以将全部的学生进行分组,并让每组的学生按照身高顺序进行排队。通过这种学生在*时学习生活中熟悉的情境,教师可以将知识的内容更好地进行表述;再例如,教师在对“认识物体和图形”进行讲解时,可以事先准备正方体、长方体、球以及圆柱体形状的多种商品,然后让学生进行角色扮演,教师在对学生进行分组后,让学生扮演店员及顾客等角色,教师为学生下达命令。比如,教师要求学生购买球类商品,学生便去挑选皮球、篮球等商品,教师要求学生购买圆柱体类商品,学生便可以去挑选铅笔等圆柱物体。教师运用“购买商品”的生活情境,可以使学生对各类物体图形有更加清晰直观的认识,并且对数学知识的应用性有更多认识,充分调动学生对小学数学知识学习的积极性;通过运用生活情境,学生可以在教师的教学过程中充分发挥其主体作用,更多地参与到教学活动中,提高将数学知识与生活建立联系及在生活中应用的能力。

  二、将生活情境运用于小学数学导入教学

  若想使小学数学的教学工作取得更好的效果,需要做好教学的导入,基于以上要求,我国小学教师已经将生活情境运用于数学课堂的导入环节中,从而使学生将更多***集中于数学课堂,提高课堂效率。通常情况下,教师将生活情境运用到教学的导入环节,学生便可以在教学工作伊始便对本节课教师所要讲授的内容产生探究的兴趣,并对知识产生更多熟悉和亲切感。第一印象对小学数学的教学工作同样重要,而教师通过生活情境的融入来导入本节课的教学内容,学生便会扭转对数学知识枯燥乏味的认识,从而对本节课知识的学习产生更多兴趣。例如,教师对“分数的初步认识”相关知识进行讲解时,可以将生活中“过生日切蛋糕”的情境向学生进行展示,教师请四位学生来到讲台,让学生把蛋糕进行切分,学生不知该如何切才比较公*,这时教师沿着蛋糕(圆形的)的两个垂直对称轴将其*均的分成四份分给学生。通过此类生活情境,教师便可以对教材中的数学知识进行更好导入,学生可以对数学知识点有更加清晰直观的认识,在课堂开始时便可以抓住学生的***,更好地完成本节课的教学目标。

  三、将生活情境运用于数学思维的培养教学

  很多时候教师需要向学生传授的不仅是知识,更应将方法教授给学生,从而使学生可以将教授的内容更好地应用到生活中的各个方面,解决各类实际问题,基于此,小学数学教师在对学生进行教学时,需要对学生数学思维方面的培养工作产生足够重视,从而实现新时期自主学习的教学目标,具体来讲,教师可以将生活情境融入思维教学及方法教学工作中,从而使学生可以掌握提取信息的方法,更好地解决学习及生活中的问题。例如,教师为学生布置题目:如何将本班的40名学生分成8组?每个小组由几人组成?教师在对此类问题进行讲解时,学生往往无法对教师讲解的内容更好地理解,实际解题过程中更是漏洞百出;然而教师可能发现了一种有趣的场景,在**班级学生进行游戏时,需要将学生分成8组,这时学生便可以轻而易举地将学生进行分组,解决这一问题。教师对以上情况进行思考,发现学生未能将该类生活情境和数学知识建立联系,未能更好地对知识进行转换思维式思考,将数学学科和生活****进行理解,未能形成数学思维。针对以上问题,教师可以将游戏的生活情境引入教学工作中,帮助学生将数学知识和生活情境之间建立联系,辅助学生形成数学思维,从而使教学工作取得更好的效果。总之,教师可以将生活情境自然、合理地运用到教学工作中,从而使学生掌握利用数学知识点解决学习及生活中各类问题的方法,达到小学数学学科的教学目的。

  四、结语

  综上所述,小学数学教师在对学生进行教学时,可以将生活情境融入到教学活动中,从而使数学课堂变得更加丰富多彩;本文就生活情境的运用工作进行研究分析,对生活情境在教学工作中的导入教学、思维培养以及例题讲解等几个模块的应用进行分析,希望可以对我国小学数学的教学工作提供一定帮助,更好地对学生各方面能力进行培养。

数学教学论文3

  数学作为一门极其重要的学科,历来具有“逻辑思维艺术”的美誉。而小学数学教学的重点目标即使学生学会应用数学基础知识、数学意识及方式方法,让学生具有基本的数学思维方式与能力。倘若教师在数学教学当中应用单一化的方法,会让学生感到数学学习的枯燥乏味,并片面认为教学是不具有趣味性与形象性的学科,从而在数学学习方面缺乏主动性。甚至对数学学习产生畏惧感。虽然数学学科中抽象性与单调性是主要特点,但是要怎样消除这样的抽象性与单调性营造出数学教学轻松愉悦的学习氛围呢?笔者认为可将情境教学法巧妙融入并应用于小学数学教学中,以此提升学生的学习主动性,有效提升数学教学成效。这是当前数学教学发展趋势。笔者依据自身多年以来在教学方面的实践经验对情境教学法在小学数学教学中的运用策略进行深入的研究与分析,并作出如下初步论述。

  一、创设情境小游戏,玩中学、学中玩

  小学生由于年龄关系,具有天真活泼、生性好动的特点,难以长时间集中***,倘若教师直接指令学生全身心参与到数学课堂教学当中,较难进入学习状态。因此,教师应该依据儿童自身具有的天性因势利导合理利用,精心创设教学情境时将数学知识较好地融入其中,使学生寓教于乐地进行学习。因此,教师可在教学中有意识地设计部分小游戏,让学生在课堂上轻松的达成各项学习任务。例如,教师可在设计的小游戏当中融入部分竞技性元素,学习“20以内加减法”时,所有学生都可向教师领取到相同数量的教具小棒,可由老师让每两个学生组成一个计算小组,教师出题给学生进行加减法计算,计算正确次数最多的小组,获得“计算小能手”的荣誉称号并获得奖励。借助这样的教学方式,让课堂教学氛围变得生动有趣,可较好地调动学生参与游戏学习的主动性,使所有学生全身心融入学习活动中,有效提升学生动手动脑的学习能力,在寓教于乐当中快乐学习。而部分较活泼好动的学生对数学练习的枯燥乏味不感兴趣,只要融合数学练习与游戏活动之后,即能有效转变这一状况。让小学生身心都沉浸在游戏中,兴趣盎然地进行着数学游戏,这样不但可让学生对数学知识具有深入理解与熟练掌握,而且可有效增强其对数学学习的兴趣,更积极主动地进行数学学习。

  二、创设生活情境,教学与实际相结合

  小学生正处于思维成长时期,其自身逻辑思维能力及想象力都较薄弱,作为一门抽象性与单调性的学科,对小学生而言感到数学学习难度较大。因此将现实生活与数学知识有充分结合,可使学生对数学知识进行深入理解,学生可在丰富多彩的现实生活当中汲取知识,从中增长阅历与经验。使学生较好地认知与理解数学知识,并学会实际应用。以此有效提升学习效率与质量。例如,学习圆形与椭圆形知识时,可从现实生活当中充分发掘出相关实例,教学时用现实生活当中常见的圆形与椭圆形物体举例,教师在教学当中有意识地创设出生活情境,能够让学生学习数学知识时与现实生活实例联系起来,可让学生加深对知识的理解,另外,使学生从学习知识的角度客观全面地看待现实生活,使学生懂得所有知识都源自现实生活,现实生活中数学知识无处不在,让学生充分认知数学知识的实用性,同时使学生懂得可从学习知识的角度客观全面地看待现实生活。教师在教学中创设生活情境,目的在于为学生构建起“知识生活化”*台,使学生更具有学习主动性,对数学产生浓厚学习兴趣,快乐地学习。

  三、创设操作情境,培养创造性思维

  小学生具有活泼好动的天性,同时思维活跃、动手实作能力较强,数学课上不少学生会出现“不安分”的行为,如会在作业本上胡乱涂鸦,折叠纸张。而这一些行为却正是学生学习数学的重要途径。小学数学课程标准提出:“数学需要使学生在实际操作当中有效学习。”因此,教师在教学实践中应该让学生亲自动手进行实践操作,同时教师应为学生创设出可供其实际操作的情境,使学生在实际当中学习与掌握数学知识。以此培养起学生的实践操作能力,让学生学会在学习过程当中动手动脑,使学生具有发散性思维能力,深入理解与掌握知识。因此,教师在教学实践中重点培养学生的实践操作能力,立足各种形式的操作活动,促进学生发散性思维,让学生在实践操作当中学习与掌握数学的基本思想与方法。例如:学习分数大小时,可安排学生分橡皮泥,指导学生将一团*整的大橡皮泥均等地分成二等份,取用其中一份;将其再均等地分成四等份,再分取一份,将其再均等地分成八等份,让学生对这些橡皮泥学习和理解分数大小这一知识点。借助让学生实践操作,让学生增强发散性思维能力与实践操作能力,促进学生学习数学时主动思考,让学生较好地理解与掌握数学知识,培养学生的发散性思维能力与实践操作能力。总之,小学生在数学教学中合理应用情境教学法,能够有效提升教学效率与质量,借助创设游戏学习、实践操作、现实生活等各种情境方式,让小学数学课堂教学显现出生机勃勃的气息,营造轻松愉悦的学习氛围,较好地调动学生的学习主动性,让学习知识的过程具有更多趣味性。另外,借助运用此种方法,促进学生发散性思维与创新发展意识发展,让学生学会积极思考,以此有效提升小学数学教学效率与质量。

数学教学论文4

  摘要:*正处于高速发展的阶段,尤其是对教育的重视,使得许多*学生的学习压力空前增大,不仅是高中生、初中生,连小学生也有所波及,对此,很多人深有体会。如何能让小学生快乐的学习,自主的学习,成为当今教育界主要的课题之一。为了解决这个问题,许多的专家进行了长期而不懈的努力,经过学习**的教育经验,然后结合*的教育特点,最终决定,让小学生在游戏中学习,在学习中游戏,是最好的方法。

  游戏在我们生活中无处不在,无论是大人还是小孩。生活中必不可少的就是游戏,它不仅影响着我们的学习,还影响着我们的生活和认知方式。比如,大人之间的喝酒划拳,青少年之间的打篮球,小孩子之间的丢沙包等等。对于小学生,游戏可以给她们创造一个有趣的学习环境,使他们**地发挥自己的想象力,创造出一幅**的画面。他们在学习中不断地去观察,去体验,然后经过反思,领悟到在今天的传统课堂上学不到的东西。这便是游戏对于学习的重要性。自从我国实行教育**以来,各种各样的教育正在不断地**创新,现在国家重视的不仅仅是学生的学习成绩,而且包括学生的素质和学生的创新能力,在这种大的趋势下,学生的素质培养和创新培养正在成为小学教育**的重点。以提高学生的综合素质为主要的教学目的,改变传统的教学模式,让学生们快乐地学习,从而提高学生的学习兴趣和学习效率,这便是教育**的精髓所在。经过多年的观察,我们发现,简单的数学游戏在小学数学教学中起了很大的积极作用。

  一、活跃了课堂气氛

  传统的教学课堂气氛很严肃,换句话说,可以形容传统教学课堂很压抑,在这样的环境下,学生的反应灵敏度相当差,学习效率很低,完全不能够激起学生的学习兴趣。老师在上面认真的讲课,而学生全部都无精打采,感觉很压抑,有种昏昏欲睡的感觉,虽然老师很努力,但结果却是徒劳的。我们提倡在课堂上做一些数学小游戏,比如,对于小学的加减乘除法,如果仅仅让小学生**记硬背,去做一些很无聊的题目,那么他们就会感到枯燥无味,甚至产生厌烦的心态,但是如果假设一个做生意找零钱的游戏,让学生们都去参加,每个学生手里一共多少钱,然后假设一些商品的价格,让学生们去买自己喜欢的东西,最后结账,让学生们自己去算,一共用多少钱,应该找零多少钱,就会**激发学生们的学习兴趣,兴趣培养起来了,学生们的学习动机也就被激发了出来。在这种活跃的课堂氛围,学生的***提高了,反应的灵敏度增强了,那么她们的学习效率也就会有很大的提高。

  二、提高了学生的综合能力

  小学生游戏不仅仅是一个游戏,它还可以从多方面提高学生的综合能力。看过动物世界的人们都知道,动物们从出生就开始做各种游戏,从这些游戏中,它们学习到了如何去和同伴相处,如何去捕猎,如何去在困境中谋取生存,这些游戏使它们后来的生活中受益非浅。我们人类也是一样,从小就对游戏情有独钟,学生们从各种游戏中,不仅收获了快乐,而且还学习到了很多东西。大多数游戏中充满了对智力的考验,而小学生们的好奇心又是天生的,在游戏中,当他们遇到困难的时候,就会想尽一切办法去解决。如果将游戏贯穿在数学的学习中,就会提高学习数学的动机,更好的达到学习数学的目的。不仅仅是学习,游戏也锻炼了小学生们的合作与交流能力,就比如买东西,学生们彼此之间要进行交流沟通,去搞价还价,争取以最低的价格买到自己想要的物品。游戏化学习过程中,学生们卸下了精神“包袱”,在遇到困难时,不会再像传统教学模式下那样产生厌学情绪,而是去努力的通过多种方法去解决问题。这样不仅激发和培养了学生们学习数学的兴趣,树立了学生们的自信心,养成了良好的学**惯,还发展了他们的自我学习能力和合作精神,以虚拟的小游戏,锻炼了它们在面对现实生活中应对解决困难的能力。

  三、激发了学习兴趣与动机

  数学学习的过程,更主要的是一种思维活动的过程,而小学生的思维水*正处于发展的阶段,因此在数学学习的过程中常常会出现思维不流畅甚至中断的现象。在这种情况下,就需要老师多加以引导,把抽象的数学公式游戏化,避免学生出现***不集中的现象,保证学生的思维在数学学习过程中不会出现阻塞。而数学游戏恰恰可以激发小学生的学习兴趣,避免因为过于抽象化的概念而是小学生产生厌学的心态,这就显现出来数学游戏在小学教学应用中的重要地位。把学习过程游戏化,使学生对数学学习更加的积极,以合作或竞争的方式使学生们爱上数学。比如讲几何图形时,老师完全可以让学生们自己动手去剪,比比看谁剪的比较好,对其进行一些口头上的夸奖,这样会**激发学生们的学习兴趣与动机。相对于传统的教师讲解与模型展示,更能达到事半功倍的效果。再比如,把同学们进行分组,然后给他们留一些任务,看看哪一组先完成,哪一组完成的质量好,不仅促进了学生们之间情感的交流,更加强了他们的学习动机与学习兴趣。

  四、结语

  当然,教育游戏本身有它的局限性,在小学教学学科中有其自己的原则,总的说要适当,应该在合适的时间适度的引入一些游戏。教育游戏的目的是为了更好完成教学目标,让学生们快乐地学习,体验学习中的乐趣,只有适当的运用游戏,才能达到理想的效果,否则只能适得其反,在这个过程中,需要老师们根据自己的经验去完成。最后希望,小学生们快快乐乐的学习,健健康康的成长,最终成为国家的栋梁之材!

数学教学论文5

  初中数学教材(北师大版)中穿插着“读一读”“想一想”“做一做”,充分体现了教材的趣味性、实践性、操作性,备课时,我们教师应用这种富有弹性的课程设置,结合学生能力发展水*的个体差异,力求提高备课的有效性,从而提高课堂效率。

  一、备课时要仔细研究教材中的“做一做”

  北师大版教材每个章节都安排了“做一做”活动,备课时要研究课堂上开展“做一做”活动的时机和时间长度,也要研究如何示范该活动。例,在讲“轴对称和轴对称图形”(七年级)时,我这样预设:把一张方纸对折,再用剪刀随意剪出一个图形,然后展开方纸,这时一个轴对称的图形就呈现在学生面前,引起学生的兴趣,于是要求学生仿照我的做法,动手做一做,尽管大家剪的图形各不相同,但都有一个对称特点,在这样的基础上引出“轴对称和轴对称图形”知识,学生对其抽象的概念和性质自然印象深刻了。

  二、备课时要用心研究教材中的“议一议”

  北师大版教材每个章节都安排了“议一议”活动,备课时要研究“议一议”活动占整个课堂的时间,更要引导学生思考,讨论与教材有关的问题,激发学生学习兴趣,提高学生分析问题的能力,特别是一些发散型问题,更能锻炼学生的思维能力。例,我在备课七年级下册第五章《三角形》第一节《认识三角形》中的第四课时,我预设这么一个问题:“在纸上画出三角形的三条高并议一议三条高相交于一点吗?它们所在直线相交于一点吗?”,解决这一问题要求学生有着丰富的分类思想,通过结合动手操作师生共同讨论,发表不同见解,最后归纳总结,得出一个完整的结论,在对这一问题的探索过程中,学生思维能力能够得到充分发挥。

  三、备课时要认真研究教材中的“想一想”

  北师大版教材每个章节都安排了“想一想”内容,在备课时要结合教材“想一想”,预设开发学生思维,培养学生兴趣的一些问题,让学生去想。例,在备课七年级数学第一章《丰富的图形世界》时,预设准备一些几何体实物,从学生能看到的摸得着的实际物体出发,“想一想”引导学生动脑动手,这样让学生不知不觉地进入了初中数学的一片***。再如,在讲七年级的“正方体表面展开”这一问题时答案有多种,此时让学生想一想,这样会给学生提供一个展示发挥的*台,让学生制作一个正方体纸盒,再用剪刀沿棱剪开展成*面,在操作过程中多想一想,不要习惯性地只有一个答案,这样不仅能开发学生思维,还培养了学生的自信心。

  总之,备课时要重视教材中的“读一读”“想一想”“做一做”,这样会提高备课的有效性,从而提高课堂教学效率。


数学建模论文10篇(扩展6)

——参加数学建模竞赛心得体会3篇

参加数学建模竞赛心得体会1

  我们是xx届级专升本的学生,以前还是专科的时候,在数学系曾两次参加过数学建模专科组竞赛。去年九月份,是我们专升本学生从数学系升本考到计算机系第一个学期,我很荣幸能**计算机系去参加2004年的高教杯全国大学生数学建模本科组的竞赛。

  我们队共有三个队员,陈晓聪、刘启铭和蔡汉钓,指导老师是钟育彬老师。虽说尽力了,但有点遗憾,只取得省级的二等奖而不能进入国家奖的评选,究其原因,但还是从中获益匪浅,积累了不少的经验和教训。

  同我们参加过的专科组的竞赛相比,此次的竞赛对于我们而言从各方面都**一个台阶。

  首先是比赛的**方面,同专科时的赛前准备相比,我们本次竞赛的赛前准备经历了二十天的高强度封闭式训练,此外,还举行了一次比较正规的模拟竞赛,让同学们能提早进入比赛的的状态,学校对于此次比赛也是比较重视的,不仅提供了比较好的训练环境和上机环境,使大家可以在一起讨论,交谈经验,又可通过上网搜集相关资料,而且每天均有特派的老师对我们进行辅导,解答疑问,使我们的训练的效果明显**一个台阶,为竞赛取得好成绩打下基础。

  其次,是模型的难度和对设计的要求。记得我们在专科组完成的题目,一个是“足球的最优赛程安排”,另一个是“抢渡长江”,都是基于生活中常识的应用性问题,或者是涉及相对简单的运算和优化问题,难度一般不是很大,参赛者的答案也基本都能接近于正确,比的是参赛者谁的模型优化得更合理,更简化易懂,更加实用。我们通常能于开始竞赛后的第三天中午就完成模型的建立和写出文本的初稿,剩余时间就是用于处理模型的一些细节问题和文本的改进问题,时间相对比较充裕。去年我们完成的题目是“奥运会临时超市网点设计优化模型”,涉及到大规模的应用模型的设计和优化问题,难度较大,涉及学识的范围也不仅仅只是数学和计算领域,而且是其它众多的综合性知识,即使有三天的建模时间,也总发觉模型尚有许多改进的'地方,在时间上都会觉得比较赶,由于此次竞赛中我们在建立模型和撰写文本上分配的时间不合理,分析和建模花费了几乎全部的时间,文本的编写及完善方面就显得不怎么规范。

  最后,是个人能力的提高。通过参加数模竞赛,参赛者的逻辑分析能力和创新思维能力得到锻练,动手能力得到明显的提高;培养了认真钻研的态度和坚持不懈的精神,这是解决一切难题的关键;培养了团队合作精神和实干的精神,能与各队员之间配合得较好,合理的分工协作,互相交流,取长补短,从实干中去寻求解决问题的方法。

  很感谢学校提供给我们一个这么宝贵的参赛机会,此次的竞赛,我们队员及指导老师钟老师都已尽力,结果并不重要,重要的是我们须在此次竞赛中总结经验和教训,为下一次竞赛积极作准备,打开坚实的基础,希望我们在下次的数学建模竞赛中能取得好的成绩。


数学建模论文10篇(扩展7)

——大一数学建模论文3篇

大一数学建模论文1

  摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水*,不断充实自己,用正确的方式引导学生进行学习、实践。

  关键词:数学;教学;数学建模

  1.数学建模思想的意义

  数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水*也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。

  2.建模思想对能力的培养

  数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。

  3.数学建模在高职数学教学中的应用

  3.1利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的**情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。

  3.2利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行**,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。

  3.3提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水*,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。

  4.提高高职数学教学数学建模思想的方式

  4.1教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水*并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和**思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学**。

  4.2重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水*。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水*,切实加强团队的整体水*和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。

  4.3重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学**惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。

  5结语

  高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水*,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除