数学《勾股定理》教学反思3篇

数学《勾股定理》教学反思1

  《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

  一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

  二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

  三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

  四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

  五是缺少方程思想和转化思想,使综合类试题痛失分数。

  六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

  针对上述问题,痛定思痛,感悟颇多:

  第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生**完成,并进行一定量的训练,才能实现教学的有效性。

  第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

  第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

  第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的'突破口。

  第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

  相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

数学《勾股定理》教学反思2

  我对本节课的教学过程是这样设计的:

  1、欣赏图片,激发兴趣

  通过欣赏xxxx年在我国**召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似*淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2、分析探究,得出猜想

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  3、拼图证明,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

  由于难度比较大,**学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

  4、反思归纳,总结升华

  一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

  5、练习巩固

  主要练习勾股定理的其它证明方法。

  6、作业设计

  请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

  通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

  (1)新课改理念只有全面渗透到教育教学工作中,与*时工作紧密结合,才能够促进学生的全面发展;

  (2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;

  (3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。

  我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

数学《勾股定理》教学反思3

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位.

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.


数学《勾股定理》教学反思3篇扩展阅读


数学《勾股定理》教学反思3篇(扩展1)

——《勾股定理》教学反思10篇

《勾股定理》教学反思1

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

  本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。

  勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

  一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

  二、将教学内容精简化.考虑到我所教班级的学生认识水*,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

  三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水*的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.

  四、实行分层教学,让不同水*的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

  诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的'应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。

  第二存在的问题是:

  (1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,

  (2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求.

  在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

《勾股定理》教学反思2

  通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。

  已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己**完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的`问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。

  同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。

  数学问题生活化,用数学知识解决生活中的实际问题,是课程**后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,

  这是课程**以来出现的最多问题之一。课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?……。其实,归根到底是:考试了怎么办呢?课程**已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了

  因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。

《勾股定理》教学反思3

  导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的***,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多**展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

  本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。

  让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。

《勾股定理》教学反思4

  本节课是公式课,探索勾股定理和利用数形结合的方法验证勾股定理。勾股定理是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起着重要的作用,在现实世界中也有着广泛的作用。由此可见,勾股定理是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

  针对八年级学生的知识结构和心理特征,本节课的设计思路是引导学生‘做’数学”,选用“引导探究式”教学方法,先由浅入深,由特殊到一般地提出问题,接着引导学生通过实验操作,归纳验证,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的**者、引导者与合作者”的教学理念。通过教师引导,学生动手、动脑,主动探索获取新知,进一步理解并运用归纳猜想,由特殊到一般,数形结合等数学思想方法解决问题。同时让学生感悟到:学习任何知识的最好方法就是自己去探究。

  本节课采用的教学流程是:创设情境→激发兴趣→提出问题→故事场景→发现新知→深入探究→网络信息→规律猜想→数字验证→拼图效果→实践应用→拓展提高→回顾小结→整体感知等环节共六个活动来完成教学任务的。在这一过程中,让学生经历了知识的发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想,从而更好地理解勾股定理,应用勾股定理,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心。

  本节课中的学生对用地砖铺成的地面的观察发现,计算建立在直角三角形斜边上的正方形面积,对直角三角形三边关系的发现,自我小结等,都给学生提供了充分的表达和交流的机会,发展了语言表达和概括能力,增强了合作意识。由展示生活图片,感受生活中直角三角形的应用,引导学生将生活图形数学化。感受到生活中处处有数学。由实际问题:工人师傅要做出一个直角三角形支架,一般会怎么做?引导学生思考:直角三角形的三边除了我们已知的不等关系以外,是不是还存在着我们未知的等量关系呢?调动学生的学习热情,激发学生的学习愿望和参与动机。由学生观察地砖铺成的地面,分别以图中的直角三角形三边为边向外作正方形,求出这三个正方形的面积,尤其计算建立在直角三角形斜边上的正方形面积。

  这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的`*方和等于斜边的*方。这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  得出结论后,还要引导学生用符号语言表示勾股定理,如符号语言:Rt△ABC中,∠C=90,AC2+BC2=AB2(或a2+b2=c2),因为将文字语言转化为数学语言是数学学习的一项基本能力。其次,介绍“勾,股,弦”的含义,进行点题,并指出勾股定理只适用于直角三角形;最后介绍古今中外对勾股定理的研究,这样可让学生更好地体会勾股定理的丰富内涵与文化背景,陶冶情操,丰富自我,从中得到深层次的发展。

《勾股定理》教学反思5

  一、教师我的体会:

  ①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

  把教材读薄,

  ②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

  ③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的',同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

  ④、使用多**进行教学,使知识显得形象直观,充分发挥现代技术作用。

  二、学生体会:

  课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程*同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

  不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

《勾股定理》教学反思6

  这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:

  1、从生活出发的教学让学生感受到学习的快乐。

  在“勾股定理”这节课中,一开始引入情景:

  **湖水清可鉴,荷花半尺出水面。

  忽来一阵狂风急,吹倒荷花水中偃。

  湖面之上不复见,入秋渔翁始发现。

  花离根二尺远,试问水深尺若干。

  知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

  2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求**爬的最短距离,这些都是勾股定理应用的典型例题。

  3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生之间的合作。

  4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

《勾股定理》教学反思7

  义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。

  在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。

  这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:

  1、欣赏图片,激发兴趣

  通过欣赏2002年在我国**召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似*淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2、分析探究,得出猜想

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  3、拼图证明,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

  由于难度比较大,**学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

  4、反思归纳,总结升华

  一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

  5、练习巩固

  主要练习勾股定理的其它证明方法。

  6、作业设计

  请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

  在优质课上,对教材中的探究内容,不但制作了多**课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。

  通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

  (1)新课改理念只有全面渗透到教育教学工作中,与*时工作紧密结合,才能够促进学生的全面发展;

  (2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;

  (3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

《勾股定理》教学反思8

  这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:

  1、从生活出发的教学让学生感受到学习的快乐。

  在“勾股定理”这节课中,一开始引入情景:

  **湖水清可鉴,荷花半尺出水面。

  忽来一阵狂风急,吹倒荷花水中偃。

  湖面之上不复见,入秋渔翁始发现。

  花离根二尺远,试问水深尺若干。

  知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

  2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求**爬的最短距离,这些都是勾股定理应用的典型例题。

  3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生之间的合作。

  4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为 “数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

《勾股定理》教学反思9

  《勾股定理》是人教版教材八年级数学(下)的内容,第一课时的教学重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。

  针对教材的任务要求,我是按照如下的教学流程进行的:

  一、欣赏图片引入新课,激发学生学习兴趣

  通过欣赏2002年在我国**召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似*淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  二、动手探究,得出猜想

  通过对地板图形中的等腰直角三角形三边关系到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内讨论,然后在全班讨论,尽量学习更多的方法。

  三、动手实践,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己动手剪拼,并利用图形进行证明。

  由于难度比较大,**学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

《勾股定理》教学反思10

  通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。

  已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己**完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。

  同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的.方法其实就是验证勾股定理所用到的方法——面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。

  数学问题生活化,用数学知识解决生活中的实际问题,是课程**后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,

  这是课程**以来出现的最多问题之一。课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?……。其实,归根到底是:考试了怎么办呢?课程**已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了

  因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。


数学《勾股定理》教学反思3篇(扩展2)

——勾股定理教学反思

勾股定理教学反思

  作为一位到岗不久的教师,我们的工作之一就是教学,写教学反思能总结教学过程中的很多讲课技巧,那么教学反思应该怎么写才合适呢?下面是小编收集整理的勾股定理教学反思,仅供参考,欢迎大家阅读。

勾股定理教学反思1

  导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的***,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多**展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

  本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

勾股定理教学反思2

  我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理:

  第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;

  第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;

  第三课时讲授了如何用勾股定理解决生活中的实际问题;

  第四课时主要讲授了怎样在数轴上找出无理数对应的点。

  这4个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。

  第一课时的课堂教学中,我始终注意了调动学生的积极性。

  兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中。因此,课堂效率较高。勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵。特别是让学生事先进行**,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力。勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点。

  第二课时我依据“学生是学习的主体”这一理念,

  在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。教师只在学生遇到困难时,进行引导或**学生通过讨论来突破难点。为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.

  第三课时在课堂教学中,始终注重学生的自主探究。

  由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的**者、引导者、合作者。另外教会学生思维,培养学生多种能力。课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。

  第四课时我另外向学生介绍了勾股定理的证明方法:

  以赵爽的“弦图”为**,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为**,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为**,“无字证明”。

  总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《**怎样走最近》的类型题加入本教材。

勾股定理教学反思3

  勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:

  一、导入新课,设疑巧激趣。

  引入20xx年在**召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的***,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。

  二、引导量量、猜猜、证证,有条不紊,思路清晰。

  让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。

  三、注重学生的情感目标,实现加强爱国**教育。

  本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生**,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。

  四、课堂上充分体现学生的主体地位,教师是**者,引导者。

  例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的**者、合作者。

  通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。

  ①感觉今天这堂课没有*时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动**的人较少。

  ②讲学稿编设的内容较多,有点欲速则不达的感觉。

勾股定理教学反思4

  这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:

  1、从生活出发的教学让学生感受到学习的快乐。

  在“勾股定理”这节课中,一开始引入情景:

  **湖水清可鉴,荷花半尺出水面。

  忽来一阵狂风急,吹倒荷花水中偃。

  湖面之上不复见,入秋渔翁始发现。

  花离根二尺远,试问水深尺若干。

  知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

  2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求**爬的最短距离,这些都是勾股定理应用的典型例题。

  3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生之间的合作。

  4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为 “数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

勾股定理教学反思5

  新课程**要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。

  为此我在教学设计中注重了以下几点:

  一、让学生主动想学

  上这节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国**教育,培养民族自豪感,激励他们奋发向上。同时培养学生的自学能力及归类总结能力。

  二、在课堂教学中,始终注重学生的自主探究

  首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的**者、引导者、合作者。

  三、教会学生思维,培养学生多种能力

  课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……

  四、注重了数学应用意识的培养

  数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。

  整节课都是在生生互动、师生互动的**气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。

勾股定理教学反思6

  本节课的数学设计主要是从面对全体学生,针对学生知识水*、生活环境、思维特点、认知风格的差异等方面进行编写讲学稿的;它的主要目的是让学生应用所学的勾定理解决现实生活中的实际问题。由于学生才刚刚掌握勾股定理,根据教材,单刀直入,要求学生运用其定理解决生活中的实际问题,对部分学生来说还存在着一定的困难。故我们初二级组全体数学老师,对教材知识内容进行了有效的整合,从中提炼教学资源,把本章的教学内容进行了重建组合,使之符合我们的学生的认知特点,心理特点级学**点,让学生学起来轻松,运用起来灵活。本节课主要是围绕“设置问题情境――建立教学模型――解释――应用及拓展”这一主线展开教学工作的。其闪光点主要有:

  一、创设问题情境,引导学生积极思考,激发其探究欲望。

  激发学生探究问题、解决问题,首先要激发其探究的兴趣,欲想要学生感兴趣,首先教师必须先创设与学习内容紧密相关的问题情境,能引导学生进行“数学思考”。本节课一开始,教师拿来一块木板表演从一间小小的门框穿过,横着进不了,竖着也过不了,问学生怎么办?瞬间,木板过门框问题成了大家讨论的焦点;同时引导学生,建立数学模型,突破将形转化为数这一思想转变难点。

  二、能调动全体学生参与教学活动。

  课堂教学活动形式多样化,有个人思考,有小组活动,有全班交流,让学生进行分析归纳,教师鼓励学生尽量用自己的语言表达自己的发现。感悟“图形”与“数量”之间的相互关系,将教学内容生活化,动态化,使学生更真切地感受到勾股定理的使用性,整节课师生之间均处与主动状态。

  三、讲学稿的设计,不拘泥于教材,吃透教材,敢于创新。

  讲学稿中所设计的例题或习题,富于生活气息。例、木板过门框、折断的树,电视机的大少等,都与现实生活有关。其实是告诉学生数学是为生活服务的,同时,数学也是来自于生活。

  四、教学目标明确,能突破教学重点、难点,教学程序有条不紊,思路清晰,或活而不乱。教师具有一定的调控能力,能轻松驾御课堂,应付自如。学生在课堂内能正确完成预设的练习。

  五、注重知识的前后连贯性,练习具有一定的层次性,使全体学生学有所用,课后拓展题,拓宽了学生的思路,培养了学生的审题能力,挖掘学生的潜能。

  上完一节课下来,总感到有点遗憾。不足之处说出来与大家共同探讨。例题的解答板书教师应在黑板上一步一步示范,尽量少用多**示范,因为幻灯片一会儿就换了,不利于学困生学习;讲学稿的编设内容过于简单基础化,不适合优生的培养,课堂中集体回答问题较多,学生单独思考、答题、**完成作业的机会不多;课后作业与堂上练习拓展不够深,有待改善。但愿我们能互相学习,取长补短,共同进取。

勾股定理教学反思7

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位。

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法 。 但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生。

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识。从而教给学生探求知识的方法,教会学生获取知识的本领。并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  本节课根据学生的认知结构采用“观察——猜想——归纳——验证——应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+ b2= c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的'学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

  通过这节课,备课、上课后,我个人还有一些困惑,

  一是问题情境的创设(放片子),原本的意图是激发学生的学习兴趣,可是感觉学生反映**。创设什么样的问题情景更合适?

  二是:探究问题的设计(放片子),本节课是一节典型的探究课,如何设计探究问题,才能使学生在探究过程中数学学习能力得到提高,教学任务顺利完成并达到预期效果?

勾股定理教学反思8

  通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。

  已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己**完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。

  同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。

  数学问题生活化,用数学知识解决生活中的实际问题,是课程**后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,

  这是课程**以来出现的最多问题之一。课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?……。其实,归根到底是:考试了怎么办呢?课程**已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了

  因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。

勾股定理教学反思9

  义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。

  在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。

  这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:

  1、欣赏图片,激发兴趣

  通过欣赏在我国**召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似*淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2、分析探究,得出猜想

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  3、拼图证明,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

  由于难度比较大,**学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

  4、反思归纳,总结升华

  一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

  5、练习巩固

  主要练习勾股定理的其它证明方法。

  6、作业设计

  请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

  在优质课上,对教材中的探究内容,不但制作了多**课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。

  通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

  (1)新课改理念只有全面渗透到教育教学工作中,与*时工作紧密结合,才能够促进学生的全面发展;

  (2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;

  (3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

勾股定理教学反思10

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+ b2= c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。

  练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。

  让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面。给学生**的空间,鼓励学生多说。这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。

  作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。

  通过这节课,备课、上课后,我个人还有一些困惑,一是问题情境的创设(放片子),原本的意图是激发学生的学习兴趣,可是感觉学生反映**。创设什么样的问题情景更合适?

  二是:探究问题的设计(放片子),本节课是一节典型的探究课,如何设计探究问题,才能使学生在探究过程中数学学习能力得到提高,教学任务顺利完成并达到预期效果?

勾股定理教学反思11

  星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。

  回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。

  对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。

  总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。

勾股定理教学反思12

  通过本节课的教学,我采用了合作探究、操作体验的教学方式。在课堂教学中,首先创设情境,提出问题;再让学生通过做一做、测量、判断、找规律,猜想出一般性的结论;然后由学生想、做、量一量、猜一猜、去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣。这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气。

  要想真正搞好以探究活动,小组合作为主的课堂教学,必须不断更新教学观念,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民

  作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的**者、引导者与合作者。因此,课堂教学过程的设计,也必须体现出学生的主体性。

勾股定理教学反思13

  今后的教学中:

  (1)立足教材,钻研教学大纲的要求;试卷中较多题目是根据课本的题目改编而来,从学生的考试情况来看课本的题目掌握不理想,这说明在*时的教学中对书本的重视不够,过多地追求课外题目的训练,但忽略学生实实在在地理解课本知识,提高思维能力。课堂上尽量把课堂还给学生,让学生积极参与到课堂中,多机会给学生展示,表演,讲题,把思路和方法讲出来,使学生更清淅地理解题目,提升自己对数学的理解。多点让学生**思考,发现问题,解决问题。

  (2)注重培养学生良好的学**惯。

  (3)加强例题示范教学,培养学生解题书写表达。

  (4)多一些数学方法、数学思想的渗透,少一些知识的生搬硬套。

  (5)在数学教学过程中,课堂上系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,从知识的联系和整体上把握基础知识。

  (6)针对学生的两极分化,加强课外作业布置的针对性。让每个学生课外有适合的作业做,对不同层次的学生布置不同难度的作业,提高课外学习的效率,减轻学生课外作业的负担。正确看待学生学习数学的差异,克服两极分化。数学课堂上多考虑、关照中下生,让他们在数学课堂上听得进,肯用手。

  (7)教师在*时的课堂教学中必须致力于改变教师的教学行为和学生的学习方式,加强学法指导,提高学生的阅读能力,*时培养学生的自学能力,使学生实实在在地理解课本知识,提高思维能力。*时要关注课本、关注运算能力、关注教学中的薄弱环节。

勾股定理教学反思14

  星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:

  (1)这节课的设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。

  (2)本课PPT的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。

  (3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。

  本节课的不足之处及改进方法:

  1、本节课我没有及时发现学生的错误。在学生上黑板做题时出现的错误没能及时发现及改正。

  2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。

  在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。

勾股定理教学反思15

  本学期我们学习了人教版第十八章《勾股定理》这一章节,现在总结如下:

  一、 变学生被动学为主动学

  节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国**教育,培养民族自豪感,特别是“赵爽弦图”激励他们奋发向上。同时培养学生的自学能力及归类总结能力。

  二、注重学生自主探究学习模式

  首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的**者、引导者、合作者。

  三、培养学生多种能力,教会学生多种思维

  课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力。课后加强学生自学能力,总结的能力。

  四、培养数学应用意识

  数学来源于生活,而又应用于生活。因此必须从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。整节课都是在生生互动、师生互动的**气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。

  五、不足之处:

  本节课拼图验证的方法以前学生没接触过,稍嫌吃力。举勾股定理在生活中的例子时,学生思路不够开阔。实际问题中,学生难将实际问题转化为数学问题来解决,使得学过的知识和实际问题有点脱离,所以在后面的教学过程中要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。

  新课程**要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。总之教学中要多思考,多反思,真真切切让我们的学生学好数学,将数学学好。


数学《勾股定理》教学反思3篇(扩展3)

——勾股定理教学反思

勾股定理教学反思

  作为一名人民教师,我们的工作之一就是课堂教学,借助教学反思我们可以学习到很多讲课技巧,那么问题来了,教学反思应该怎么写?下面是小编为大家整理的勾股定理教学反思,仅供参考,欢迎大家阅读。

勾股定理教学反思1

  星期四上午第三节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。

  回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。

  怎么避免上述授课时间紧张问题,取得更高的课堂效率呢?我简单谈两点建议,希望各位数学老师以后教此课时得到共勉。

  一是在设计探究时应注重简化。我设计了三个探究:探究1是古埃及人用结绳打桩法得到直角;探究2是师生用尺规作图法得到直角;探究3是利用三角形全等的知识通过证明得到直角。现在觉得应把探究2简化,老师就“勾三股四弦五”给学生当堂做尺规作图演示,没有必要再让学生亲自作图,因为教师的演示,效果明显,学生已经理解,达到目标要求,这样就可以节约5分钟时间。

  二是对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。

  总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。

勾股定理教学反思2

  教学目标

  一、知识与技能

  1.掌握直角三角形的判别条件。

  2.熟记一些勾股数。

  3.掌握勾股定理的逆定理的探究方法。

  二、过程与方法

  1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想。

  2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神。

  三、情感态度与价值观

  1.通过介绍有关历史资料,激发学生解决问题的愿望。

  2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神。

  教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.理解并掌握勾股定理的逆定理,并会应用。

  教学难点理解勾股定理的逆定理的推导。

  教具准备多**课件。

  教学过程

  一、创设问属情境,引入新课

  活动1

  (1)总结直角三角形有哪些性质。

  (2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。

  师生行为学生分组讨论,交流总结;教师引导学生回忆。

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。

  生:直角三角形有如下性质:

  (1)有一个角是直角;

  (2)两个锐角互余;

  (3)两直角边的*方和等于斜边的*方;

  (4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形。

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2

  问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5。有下面的关系“32+42=52”。那么围成的三角形是直角三角形。

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。

  师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与;②能否从操作活动中,用数学语言归纳、猜想出结论;③学生是否有克服困难的勇气。

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52。我们围成的三角形是直角三角形。

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的*方和等于第三边的*方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长a,b,c

  5,12,13;7,24,25;8,15,17。

  (1)这三组效都满足a2+b2=c2吗?

  (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

  设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件。

  师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论。

  教师对学生归纳出的结论应给予解释,我们将在下一节给出证明.本活动教师应重点关注学生:①对猜想出的结论是否还有疑虑;②能否积极主动的操作,并且很有耐心。

  生:(1)这三组数都满足a2+b2=c2。(2)以每组数为边作出的三角形都是直角三角形。

  师:很好,我们进一步通过实际操作,猜想结论。

  命题2如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形。

  同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代*人也曾利用相似的方法得到直角,直至科技发达的今天。

勾股定理教学反思3

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位.

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

勾股定理教学反思4

  “教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料,提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国**教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能力及归类总结能力。

勾股定理教学反思5

  反思之一:教学观念的转变。

  “教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料(可上网查,也可查阅报刊、书籍),提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国**教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能及归类总结能力。

  反思之二:教学方式的转变。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的.。现在的数学教学到处充斥着过量的、重复的题目训练。我认为真正的教学方式的转变要体现在这两个方面:一是要关注学生学习的过程。首先要关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;同时要关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。二是要关注学生学习的知识性及其实际应用。本节课的主要目的是掌握勾股定理,体会数形结合的思想。现在往往是学生知道了勾股定理而不知道在实际生活中如何运用勾股定理,我们在学生了解勾股定理以后可以出一个类似于《九章算术》中的应用题:在*静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖与水面*齐,已知水草移动的水*距离为6分米,问这里的水深是多少?

  教学方式的转变在关注知识的形成同时,更加关注知识的应用,特别是所学知识在生活中的应用,真正起到学有所用而不是枯燥的理论知识。这一点上在新课标中体现的尤为明显。

  反思之三:多**的重要辅助作用。

  课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多**教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多**来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。

  反思之四:转变教学的评价方式,提高学生的自信心。

  评价对于学生来说有两种评价的方式。一种是以他人评价为基础的,另一种是以自我评价为基础的。每个人素质生成都经历着这两种评价方式的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人**机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自我评价的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。

  在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的一种评价等等。

勾股定理教学反思6

  勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:

  一、导入新课,设疑巧激趣。

  引入20xx年在**召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的***,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。

  二、引导量量、猜猜、证证,有条不紊,思路清晰。

  让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。

  三、注重学生的情感目标,实现加强爱国**教育。

  本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生**,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。

  四、课堂上充分体现学生的主体地位,教师是**者,引导者。

  例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的**者、合作者。

  通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。

  ①感觉今天这堂课没有*时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动**的人较少。

  ②讲学稿编设的内容较多,有点欲速则不达的感觉。

勾股定理教学反思7

  导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的***,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多**展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

  本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

勾股定理教学反思8

  本节课为华东师大八年级上第三章第一节的内容。本节课开始是利用了多**介绍了在**召开的20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的***,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多**展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

  在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后**演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,**提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

  在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生的想像力。

  最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

勾股定理教学反思9

  三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。

  实际上,它是我国古代劳动人民通过长期测量经验发现的。他们发现:当直角三角形短的直角边(勾)是3,长的直角边(股)是4的时候,直角的对边(弦)正好是5。而。

  这是勾股定理的一个特例。以后又通过长期的测量实践,发现只要是直角三角形,它的三边都有这么个关系。即

  与它们相当的正整数有许多组

  《周髀算经》上还说,夏禹在实际测量中已经初步运用这个定理。这本书上还记载,有个叫陈子的数学家,应用这个定理来测量太阳的高度、太阳的直径和天地的长阔等。

  5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角。以后才渐渐推广到普遍的情况。

  金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。

  到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13的时候,有这么个关系:,。

  他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是直角三角形?

  他搜集了许多例子,结果都对这两个问题作了肯定的回答。他高兴非常,杀了一百头牛来祝贺。

  以后,**人就将这个定理称为毕达哥拉斯定教学反思《《勾股定理》教学反思》一文

勾股定理教学反思10

  星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:

  (1)这节课的设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。

  (2)本课PPT的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。

  (3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。

  本节课的不足之处及改进方法:

  1、本节课我没有及时发现学生的错误。在学生上黑板做题时出现的错误没能及时发现及改正。

  2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。

  在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。

勾股定理教学反思11

  义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。

  在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。

  这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:

  1、欣赏图片,激发兴趣

  通过欣赏在我国**召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

  接下来,让学生欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似*淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

  这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

  2、分析探究,得出猜想

  通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

  在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

  3、拼图证明,得出定理

  先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

  由于难度比较大,**学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

  4、反思归纳,总结升华

  一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

  5、练习巩固

  主要练习勾股定理的其它证明方法。

  6、作业设计

  请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

  在优质课上,对教材中的探究内容,不但制作了多**课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。

  通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

  (1)新课改理念只有全面渗透到教育教学工作中,与*时工作紧密结合,才能够促进学生的全面发展;

  (2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;

  (3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

勾股定理教学反思12

  《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

  一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

  二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

  三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

  四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

  五是缺少方程思想和转化思想,使综合类试题痛失分数。

  六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

  针对上述问题,痛定思痛,感悟颇多:

  第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生**完成,并进行一定量的训练,才能实现教学的有效性。

  第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

  第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

  第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

  第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

  相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

勾股定理教学反思13

  勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的****的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:

  一、注重知识的自然生发。

  传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是**学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。

  二、注重数学课上的操作性学习

  操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。

  三、注重问题设计的开放性

  课堂教学是教师**、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑**来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸**意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。

  四、注重让学生经历完整的数学知识的发现过程。

  新《数学课程标准》在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水*的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。

  如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。

勾股定理教学反思14

  一、教学的成功体验

  《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行**思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动.

  二、信息技术与学科的整合

  在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多**教学,为学生创设了生动、直观的现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的***.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是

  静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flas***演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃.

勾股定理教学反思15

  勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。

  一 、转变师生角色,让学生自主学习。由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明 + = (学生分组讨论。)学生展示拼图方法,课件辅助演示。 新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有**者的**指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。 “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  二、转变教学方式,让学生探索、研究、体会学习过程。 学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。课堂中要特别关注:

  1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。

  3、学习的知识性:掌握勾股定理,体会数形结合的思想。

  三、提高教学科技含量,充分利用多**。 勾股定理知识属于几何内容,而几何图形可以直观地表示出来,学生认识图形的初级阶段中主要依靠形象思维。对几何图形的认识始于观察、测量、比较等直观实验**,现代儿童认识几何图形亦如此,可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。 培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。教科书的几何部分,要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。 由于信息技术的发展与普及,直观实验**在教学中日益增加,本节课利用我们学校建立了电教教室,通过制作课件对于几何学的学习起到积极作用。


数学《勾股定理》教学反思3篇(扩展4)

——勾股定理的教学反思10篇

勾股定理的教学反思1

  对于“勾股定理的应用”的反思和小结有以下几个方面:

  1、课前准备不充分:

  基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。

  分析:由勾股定理结论:直角三角形中两直角边的*方和等于斜边的*方。

  其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的面积。但学生竟然不知道。其二是课件准备不充分,***一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。

  2、课堂上的语言应该简练。这是我上课的最大弱点,我不敢放手让学生去**思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去**思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的`“放多少”是一门艺术,我要好好向老教师学习!

  3、鼓励学生的艺术。教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。

  4、启发学生的技巧有待提高。启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。

勾股定理的教学反思2

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

  本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。

  勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

  一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

  二、将教学内容精简化.考虑到我所教班级的学生认识水*,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

  三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水*的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.

  四、实行分层教学,让不同水*的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

  诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。

  第二存在的问题是:

  (1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,

  (2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求.

  在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

勾股定理的教学反思3

  教学目标

  一、知识与技能

  1.掌握直角三角形的判别条件。

  2.熟记一些勾股数。

  3.掌握勾股定理的逆定理的探究方法。

  二、过程与方法

  1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想。

  2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神。

  三、情感态度与价值观

  1.通过介绍有关历史资料,激发学生解决问题的愿望。

  2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神。

  教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.理解并掌握勾股定理的逆定理,并会应用。

  教学难点理解勾股定理的逆定理的推导。

  教具准备多**课件。

  教学过程

  一、创设问属情境,引入新课

  活动1

  (1)总结直角三角形有哪些性质。

  (2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。

  师生行为学生分组讨论,交流总结;教师引导学生回忆。

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。

  生:直角三角形有如下性质:

  (1)有一个角是直角;

  (2)两个锐角互余;

  (3)两直角边的*方和等于斜边的*方;

  (4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形。

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2

  问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5。有下面的关系“32+42=52”。那么围成的三角形是直角三角形。

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。

  师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与;②能否从操作活动中,用数学语言归纳、猜想出结论;③学生是否有克服困难的勇气。

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52。我们围成的三角形是直角三角形。

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的*方和等于第三边的*方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长a,b,c

  5,12,13;7,24,25;8,15,17。

  (1)这三组效都满足a2+b2=c2吗?

  (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

  设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件。

  师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论。

  教师对学生归纳出的结论应给予解释,我们将在下一节给出证明.本活动教师应重点关注学生:①对猜想出的结论是否还有疑虑;②能否积极主动的操作,并且很有耐心。

  生:(1)这三组数都满足a2+b2=c2。(2)以每组数为边作出的三角形都是直角三角形。

  师:很好,我们进一步通过实际操作,猜想结论。

  命题2如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形。

  同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代*人也曾利用相似的方法得到直角,直至科技发达的今天。

勾股定理的教学反思4

  一、教师我的体会:

  ①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

  把教材读薄,

  ②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

  ③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

  ④、使用多**进行教学,使知识显得形象直观,充分发挥现代技术作用。

  二、学生体会:

  课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程*同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的.研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

  不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理的教学反思5

  本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。

  例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  1、这个问题意味着,如果围成的三角形的三边分别为3、4、5.那么围成的三角形是直角三角形.

  2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。同学们经过操作,观察,探究,归纳得到直角三角形的判定,由感性认识上升到理性认识,能力得到提升。

  3、在教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在**的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。

勾股定理的教学反思6

  本节课主要是以基础知识复习为主,重点是复习勾股定理和勾股定理的逆定理以及它们的简单应用。首先学生回顾这章书的各知识点,教师展示本章书的知识结构框图;接着学生提出疑难点,教师根据学生所提的疑难点以及*常学生在作业中常出现的错误进行有针对性的讲解;然后学生完成针对练习;最后老师根据学生的答题情况进行有针对性的讲评。这节课的流程:知识点回顾、例题展现、针对练习、反馈、巩固、拓展。学生通过讨论、听讲、练习、小结等,进一步巩固了本章的各知识点,同时也解决了学习中的困惑。总的来说,这节课是基本完成了任务,但课堂气氛有点沉闷。如何改进会更好呢?因此引发了我对复习课的一些思考。

  1、知识点回顾这个环节,可以让学生自己画知识框架图。很多学生对复习课不重视,因此在上课时可以先进行一次当堂测试,让学生把这章书的两大内容用文字或数学语言写出来,教师根据学生的测试情况进行评价,引起学生的重视。

  2、练习题尽量要精简,避免题海战术。

  3、在讲例题时,可以请表达能力较好的同学来讲。这样得以调动课堂气氛,也可以培养学生的能力。

  4、学生在做巩固练习时,教师应该着重辅导后进生。

  5、在讲评练习时学生总是不爱听,因为优生已经懂了,不想听,差生又因为讲解不够详细而听不懂,所以也听不进去。此时可以发挥合作学习小组的作用。教师公布答案后,由每小组中数学成绩较好的同学给同组中的同学进行有针对性的讲评。这样的效果往往比老师在上面讲评的效果好很多。

  6、学生的计算能力差是一个不可忽视的问题。

  7、把学生常出错的地方展示出来,加深学生的印象,避免再犯同样的错误。

  8、学生一定要提前预习这章讲学稿,否则一节课是无法完成这么多内容的。

  除此之外,在这节课中还应该加强以下的几个思想的渗透。

  一、分类思想

  1、直角三角形中,已知两条边,不知道是直角边还是斜边时,应分类讨论。

  二、方程思想

  1、直角三角形中,当无法已知两边求第三边时,应采用间接求法。

  2、灵活地寻求题中的等量关系,利用勾股定理列方程。

  三、展开思想

  1、几何体的表面路径最短问题,一般展开表面成*面。

  2、利用两点间线段最短及勾股定理求解。

勾股定理的教学反思7

  勾股定理的探索和证明蕴含丰富的数学思想和研究方法,是培养学生思维品质的载体。它对数学发展具有重要作用。勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,以简洁优美的形式,丰富深刻的内涵刻画了自然界****关系,是数形结合的优美典范。教学中我以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。

  1、查资料

  我让学生课前查阅有关勾股定理资料,学生对勾股定理历史背景有初步了解,学生充满自信迎接新知识《勾股定理》学习的挑战。

  学生查得资料:世界许多科学家寻找“外星人”。1820年,德国数学家高斯提出,在西伯利亚森林伐出直角三角形空地,在空地种上麦子,以三角形三边为边种上三片正方形松树林,如果有外星人路过地球附近,看到这个巨大数学图形,便知道:这个星球上有智慧生命。我国数学家华罗庚提出:要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。

  2、讲故事

  毕达哥拉斯是古希腊数学家。相传2500年前,毕达哥拉斯在朋友家做客,发现朋友家用地砖铺成地面反映了直角三角形三边的数量关系。

  我讲毕达哥拉斯故事,提出问题。学生**思考,提出猜想。我配合演示,使问题形象、具体。教学活动从“数小方格”开始,起点低、趣味性浓。学生在伟人故事中进行数学问题的讨论和探索。*淡无奇现象中隐藏深刻道理。

  3、**题

  “问题是思维的起点”,一段生动有趣的动画,点燃学生求知欲,以景激情,以情激思,引领学生进入学习情境,学生带着问题进课堂。

  例如:一架长为10m的梯子AB斜靠在墙上,若梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑2m,那么它的底端是否也滑动2m?

  尽管学生讲的不完全正确,但培养了学生运用数学语言进行抽象、概括的能力,学生经历了应用勾股定理解决问题的思考过程,学生增长了知识,学生增长了智慧。

  例如:《九章算术》记载有趣问题:有一个水池,水面是边长为10尺的正方形,在水池的**有一根新生芦苇,它高出水面1尺,若把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池深度和这根芦苇长度各是多少?

  我通过“著名问题”探究,让学生了解勾股定理的古老与神奇。问题本身具有极大挑战性,激发了学生强烈求知欲,激发了学生探究知识的愿望。学生讨论交流,发现用代数观点证明几何问题的思路。我配以演示,分散了难点,培养了学生发散思维、探究数学问题的能力。

  4、讲证法

  我抛砖引玉介绍赵爽弦图,赵爽用几何图形截、割、拼、补证明代数恒等关系,具有严密性,直观性,是*古代以形证数、形数**的典范。赵爽指出:四个全等直角三角形拼成一个中空的正方形,大正方形面积等于小正方形面积与4个三角形面积和。 “赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。这个图案被选为20xx年**召开的国际数学家大会会徽。

  随后展示了**总统证法。1876年4月1日,**伽菲尔德在《新英格兰教育日志》发表勾股定理的证法。1881年,伽菲尔德就任**总统,为了纪念他直观、简捷、易懂、明了的证明,这一证法被称为“总统”证法。我感觉学生是小小发明家。学生在建构知识的同时,欣赏作品享受成功的喜悦。

  5、巧设计

  练习设计我立足巩固,着眼发展,兼顾差异,满足学生渴望发展要求。练习有基础训练,变式训练,中考试题,引出勾股树,学生惊叹奇妙的数学美。课内知识向课外知识延伸,打开了学生思路,给学生提供了广阔空间。数学教学变得生机勃勃,学生喜欢数学,热爱数学。

  我让学生讲解搜集资料,丰富了学生背景知识,体现了自主学习方式。我对学生进行爱国**教育,激发了学生民族自豪感和奋发向上学习精神。我让学生欣赏丰富多彩的数学文化,展示五彩斑斓的文化背景,激发了学生的爱国热情。

  6、善总结

  课堂小结是对教学内容的回顾,是对数学思想、方法的总结。我强调重点内容,注重知识体系的形成,培养了学生反思习惯。

  我还想对同学们说:牛顿——从苹果落地最终确立了万有引力定律,我们——从朝夕相处的三角板发现了勾股定理,虽然两者尚不可同日而语,但探索和发现——终有价值,也许就在身边,也许就在眼前,还隐藏着无穷的“万有引力定律”和“勾股定理”……

  祝愿同学们,修得一个用数学思维思考世界的头脑,练就一双用数学视角观察世界的眼睛,开启新的探索——发现*凡中的不*凡之谜……

勾股定理的教学反思8

  “教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料,提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国**教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能力及归类总结能力。

勾股定理的教学反思9

  教学目标

  一、知识与技能

  1.掌握直角三角形的判别条件。

  2.熟记一些勾股数。

  3.掌握勾股定理的逆定理的探究方法。

  二、过程与方法

  1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想。

  2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神。

  三、情感态度与价值观

  1.通过介绍有关历史资料,激发学生解决问题的愿望。

  2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神。

  教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.理解并掌握勾股定理的逆定理,并会应用。

  教学难点理解勾股定理的逆定理的推导。

  教具准备多**课件。

  教学过程

  一、创设问属情境,引入新课

  活动1

  (1)总结直角三角形有哪些性质。

  (2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。

  师生行为学生分组讨论,交流总结;教师引导学生回忆。

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。

  生:直角三角形有如下性质:

  (1)有一个角是直角;

  (2)两个锐角互余;

  (3)两直角边的*方和等于斜边的*方;

  (4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形。

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2

  问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5。有下面的关系“32+42=52”。那么围成的三角形是直角三角形。

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。

  师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与;②能否从操作活动中,用数学语言归纳、猜想出结论;③学生是否有克服困难的勇气。

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52。我们围成的三角形是直角三角形。

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的*方和等于第三边的*方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长a,b,c

  5,12,13;7,24,25;8,15,17。

  (1)这三组效都满足a2+b2=c2吗?

  (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

  设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件。

  师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论。

  教师对学生归纳出的结论应给予解释,我们将在下一节给出证明.本活动教师应重点关注学生:①对猜想出的结论是否还有疑虑;②能否积极主动的操作,并且很有耐心。

  生:(1)这三组数都满足a2+b2=c2。(2)以每组数为边作出的三角形都是直角三角形。

  师:很好,我们进一步通过实际操作,猜想结论。

  命题2如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形。

  同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代*人也曾利用相似的方法得到直角,直至科技发达的今天。

勾股定理的教学反思10

  本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。

  例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

  这个问题意味着,如果围成的三角形的三边分别为3、4、5.那么围成的三角形是直角三角形.

  2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。同学们经过操作,观察,探究,归纳得到直角三角形的判定,由感性认识上升到理性认识,能力得到提升。

  3、在教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在**的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的'人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。


数学《勾股定理》教学反思3篇(扩展5)

——《勾股定理逆定理》的优秀教学反思3篇

《勾股定理逆定理》的优秀教学反思1

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

  本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。

  勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

  一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

  二、将教学内容精简化.考虑到我所教班级的学生认识水*,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

  三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水*的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.

  四、实行分层教学,让不同水*的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

  诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的`主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。

  第二存在的问题是:

  (1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,

  (2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求.

  在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

《勾股定理逆定理》的优秀教学反思2

  这次展示课,我上的是八年级数学课《17.2勾股定理的逆定理》,我是根据“五步三查”课堂模式来设计“导学案”和**教学的。这次课相对于过去基础上的课堂**是完全不同的课,其进步之处之一是规范了课堂的结构,明确了课堂模式“五步三查”,操作上更能心中有数。进步之二是发挥学生的积极性方式与**更多些,“老师需要什么?就评价什么”,进行了有益的尝试,将评价纳入整个课堂,如何通过开展小组的评比与竞赛调动学生积极性及学习氛围积累了经验。进步之三是“导学案”的编写上更适和学生,更有利于对课堂的指导。进步之四是课堂效率和课堂效果更好。进步之五学生的主体作用得到了真正的体现。进步之六是课堂不仅成了学习知识的地方,更是增进情感、培养能力的地方。

  这次展示课也有待改进的地方,其一是“五步三查”模式操作细节不清楚,对整个操作流程理解不到位,导致整个课堂有些乱,因不能多讲,又不放心学生学。其二是学生的能力培养还应下大功夫,过去是以老师讲为主,学生只是听记,现在要他们自学、讨论,同学们还不习惯,导致课堂有些沉闷。其三是时间紧,教学任务完不成,课堂的知识掌握度、能力目标达成度较低。其四是“五步三查”各细节的科学性、有效性落实,有许多细节的落实与协调有待深化,如如何评价?如何有效利用评价得分?如何有效独学?其五是“导学案”如何更科学编制?体现分层同时又能更有利于指导学生的学,也有利于指导教师的教。其六更主要的是老师的观念,树立学生为主体的观念,将学生发展落实到教育教学各环节这才是根本。勇于变革和创新,积极研究和实践才能保障我们的课堂**更顺利推进。虽然存在这样多,或更多的问题,但对其前景我们每一个人都充满了信心,我们相信只有这样做才能真正达到教育的目标。


数学《勾股定理》教学反思3篇(扩展6)

——《勾股定理逆定理》优秀的教学反思3篇

《勾股定理逆定理》优秀的教学反思1

  本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。

  例如:

  1、问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

  这个问题意味着,如果围成的三角形的三边分别为3、4、5。那么围成的三角形是直角三角形。

  2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。同学们经过操作,观察,探究,归纳得到直角三角形的判定,由感性认识上升到理性认识,能力得到提升。

  3、在教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在**的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。

《勾股定理逆定理》优秀的教学反思2

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

  本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形。即:勾股定理的逆定理。

  勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

  一、创设情境,提出猜想达到直观性的教学要求。

  让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

  二、将教学内容精简化。

  考虑到我所教班级的学生认识水*,做了如下教学设计:

  ⑴将教学目标定为让学生掌握勾股定理的逆定理。以及逆定理的应用,而对于本课中逆定理的证明。以及其探究都放在一下节课再进行讲解。

  ⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化。本节课也不详细讲。本节课的的重点放在掌握勾股定理的逆定理,及其应用。从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

  三、应用训练,巩固新知。

  为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水*的学生是很多帮助的。从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策。

  四、实行分层教学,让不同水*的学生在同一课堂都能学好。

  为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题。根据学生原有的认知结构,让学生更好地体会分割的思想。设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验。真正体现学生是学习的主人。。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

  诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:

  ①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的。因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理。这样快而有效;

  ②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容。

  ③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。

  存在的问题是:

  (1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,

  (2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉。对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间。此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的`增加一些提高题,以满足这一层次的学生的学习练习要求。

  在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

《勾股定理逆定理》优秀的教学反思3

  根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:

  1、创设情境,提出猜想让

  学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫。同时,引导学生从特殊到一般提出猜想。

  2、证明猜想,得出新知

  由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的方法证明问题的思想,突破定理证明这一难点,并适时出示课题。

  3、应用训练,巩固新知

  为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标。第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题。根据学生原有的认知结构,让学生更好地体会分割的思想。设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验。真正体现学生是学习的主人。

  4、归纳小结,形成体系

  让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等。帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。

  5、布置作业

  课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展。


数学《勾股定理》教学反思3篇(扩展7)

——初中数学知识点之勾股定理3篇

初中数学知识点之勾股定理1

  各位热爱数学的初中同学们要注意啦,小编通过认真分析和详细的笔记,已经将初中数学知识点归纳总结大全整理出来了。下面大家就跟随小编一起来看看勾股定理的知识点总结吧。更多更全的初中数学讯息尽在。

  一、勾股定理:

  1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的*方和等于斜边的*方。

  2.勾股定理的证明:

  勾股定理的证明方法很多,常见的是拼图的方法

  用拼图的方法验证勾股定理的思路是:

  (1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

  (2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

  4.勾股定理的适用范围:

  勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

  二、勾股定理的逆定理

  1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的*方和与较长边的*方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

  (2)算出最大边的*方与另两边的*方和;

  (3)比较最大边的*方与别两边的*方和是否相等,若相等,则说明是直角三角形。

  三、勾股数

  能够构成直角三角形的三边长的三个正整数称为勾股数.

  四、一个重要结论:

  由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

  五、勾股定理及其逆定理的应用

  解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的'应用。


数学《勾股定理》教学反思3篇(扩展8)

——勾股定理教学设计 (菁选5篇)

勾股定理教学设计1

  一、教学目标

  1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。

  2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。

  3、培养学生数学发现、数学分析和数学推理证明的能力。

  二、教学重难点

  利用拼图证明勾股定理

  三、学具准备

  四个全等的.直角三角形、方格纸、固体胶

  四、教学过程

  (一) 趣味涂鸦,引入情景

  教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?

  (1)在边长为1的方格纸**意画一个顶点都在格点上的直角三角形。

  (2)再分别以这个三角形的三边向三角形外作3个正方形。

  学生活动:先**完成,再在小组内互相交流画法,最后班级展示。

  (二)小组探究,大胆猜想

  教师:观察自己所涂鸦的图形,回答下列问题:

  1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?

  2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。

  3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?

  4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?

  学生活动:先**思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。

  (三)趣味拼图,验证猜想

  教师:请利用四个全等的直角三角形进行拼图。

  1、你能拼出哪些图形?能拼出正方形和直角梯形吗?

  2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。

  学生活动:**拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。

  (四)课堂训练 巩固提升

  教师:请完成下列问题,并**进行展示。

  1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的对边分别为a,b,c

  已知a=6,b=8.求c.

  已知c=25,b=15.求a .

  已知c=9,a=3.求b.(结果保留根号)

  学生活动:先**完成问题,再组内交流解题心得,最后**展示,其他小组帮助解决问题。

  (五)课堂小结,梳理知识

  教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数*用等方向进行总结。

勾股定理教学设计2

  一、教学任务分析

  勾股定理是*面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。

  《20xx版数学课程标准》对勾股定理教学内容的要求是:

  1、在研究图形性质和运动等过程中,进一步发展空间观念;

  2、在多种形式的数学活动中,发展合情推理能力;

  3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

  4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

  本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、

  本节课的教学目标是:

  1、能正确运用勾股定理及其逆定理解决简单的实际问题。

  2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、

  教学重点和难点:

  应用勾股定理及其逆定理解决实际问题是重点。

  把实际问题化归成数学模型是难点。

  二、教学设想

  根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

  在教学设计中,尽量考虑到不同学习水*的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

  三、教学过程分析

  本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、

  第一环节:情境引入

  情景1:复习提 问:勾股定理的语言表述以及几何语言表达?

  设计意图:温习旧知识,规范语言及数学表达,体现

  数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?

  设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

  第二环节:合作探究(圆柱体表面路程最短问题)

  情景3:课本引例(**怎样走最近)

  设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、

  第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)

  设计意图:将问题的条件稍做改变,让学生尝试**解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为*面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

  第四环节:议一议

  内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  设计意图:

  运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、

  第五环节:方程与勾股定理

  在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的**有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、

  第六环节:交流小结内容:师生相互交流总结:

  1、解决实际问题的方法是建立数学模型求解、

  2、在寻求最短路径时,往往把空间问题*面化,利用勾股定理及其逆定理解决实际问题、

  3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

  意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

  第一道题难度较小,大部分学生可以**完成,第二道题有较大难度,可以交流讨论完成。

勾股定理教学设计3

  教学目标:

  理解并掌握勾股定理及其证明。 在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的思想。 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,培养学生的合作交流意识和探索精神

  重点

  探索和证明勾股定理。

  难点

  用拼图方法证明勾股定理。

  教学准备:

  教具

  多**课件。

  学具

  剪刀和边长分别为a、b的两个连体正方形纸片。

  教学流程安排

  活动流程图 活动内容和目的

  活动1 创设情境→激发兴趣 通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣。

  活动2 观察特例→发现新知 通过问题激发学生好奇、探究和主动学习的欲望。

  活动3 深入探究→交流归纳 观察分析方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力。

  活动4 拼图验证→加深理解 通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。

  活动5 实践应用→拓展提高 初步应用所学知识,加深理解。

  活动6 回顾小结→整体感知 回顾、反思、交流。

  活动7 布置作业→巩固加深 巩固、发展提高。

勾股定理教学设计4

  一、教学目标

  (一)知识点

  1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。

  2、会利用勾股定理解释生活中的简单现象。

  (二)能力训练要求

  1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。

  2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。

  (三)情感与价值观要求

  1、培养学生积极参与、合作交流的意识。

  2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。

  二、教学重、难点

  重点:探索和验证勾股定理。

  难点:在方格纸上通过计算面积的方法探索勾股定理。

  三、教学方法

  交流探索猜想。

  在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。

  四、教具准备

  1、学生每人课前准备若干张方格纸。

  2、投影片三张:

  第一张:填空(记作1.1.1 A);

  第二张:问题串(记作1.1.1 B);

  第三张:做一做(记作1.1.1 C)。

  五、教学过程

  Ⅰ、创设问题情境,引入新课

  出示投影片(1.1.1 A)

  (1)三角形按角分类,可分为_________、_________、_________。

  (2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?

  (3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?

勾股定理教学设计5

  课题:“勾股定理”第一课时

  内容:教材分析、教学过程设计、设计说明

  一、教材分析

  (一)教材所处的地位

  这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)根据课程标准,本课的教学目标是:

  1、能说出勾股定理的内容。

  2、会初步运用勾股定理进行简单的计算和实际运用。

  3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

  4、通过介绍勾股定理在*古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

  (三)本课的教学重点:探索勾股定理

  本课的教学难点:以直角三角形为边的正方形面积的计算。

  二、教法与学法分析:

  教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

  学法分析:在教师的**引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  三、教学过程设计

  (一)提出问题:

  首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

  (二)实验操作:

  1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的*方和等于斜边的*方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的*方和等于斜边的*方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的.能力在无形中得到了提高,这对后面的学习及有帮助。

  3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

  (三)归纳验证:

  1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

  2、验证为了让学生确信结论的正确性,引导学生在纸**意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国**教育。

  (四)问题解决:

  让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

  (五)课堂小结:

  主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

  (六)布置作业:

  课本P6习题1.11,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

  四、设计说明

  1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

  2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

  3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

  4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。


数学《勾股定理》教学反思3篇(扩展9)

——八年级勾股定理教学反思

八年级勾股定理教学反思

  身为一位优秀的老师,我们需要很强的课堂教学能力,教学反思能很好的记录下我们的课堂经验,那么你有了解过教学反思吗?下面是小编收集整理的八年级勾股定理教学反思 ,仅供参考,欢迎大家阅读。

八年级勾股定理教学反思 1

  今后的教学中:

  (1)立足教材,钻研教学大纲的要求;试卷中较多题目是根据课本的题目改编而来,从学生的考试情况来看课本的题目掌握不理想,这说明在*时的教学中对书本的重视不够,过多地追求课外题目的训练,但忽略学生实实在在地理解课本知识,提高思维能力。课堂上尽量把课堂还给学生,让学生积极参与到课堂中,多机会给学生展示,表演,讲题,把思路和方法讲出来,使学生更清淅地理解题目,提升自己对数学的理解。多点让学生**思考,发现问题,解决问题。

  (2)注重培养学生良好的学**惯。

  (3)加强例题示范教学,培养学生解题书写表达。

  (4)多一些数学方法、数学思想的渗透,少一些知识的生搬硬套。

  (5)在数学教学过程中,课堂上系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,从知识的联系和整体上把握基础知识。

  (6)针对学生的两极分化,加强课外作业布置的针对性。让每个学生课外有适合的作业做,对不同层次的学生布置不同难度的作业,提高课外学习的效率,减轻学生课外作业的负担。正确看待学生学习数学的差异,克服两极分化。数学课堂上多考虑、关照中下生,让他们在数学课堂上听得进,肯用手。

  (7)教师在*时的课堂教学中必须致力于改变教师的教学行为和学生的学习方式,加强学法指导,提高学生的阅读能力,*时培养学生的自学能力,使学生实实在在地理解课本知识,提高思维能力。*时要关注课本、关注运算能力、关注教学中的薄弱环节。

八年级勾股定理教学反思 2

  勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。

  一 、转变师生角色,让学生自主学习。由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明 + = (学生分组讨论。)学生展示拼图方法,课件辅助演示。 新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有**者的**指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。 “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  二、转变教学方式,让学生探索、研究、体会学习过程。 学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。课堂中要特别关注:

  1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。

  3、学习的知识性:掌握勾股定理,体会数形结合的思想。

  三、提高教学科技含量,充分利用多**。 勾股定理知识属于几何内容,而几何图形可以直观地表示出来,学生认识图形的初级阶段中主要依靠形象思维。对几何图形的认识始于观察、测量、比较等直观实验**,现代儿童认识几何图形亦如此,可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。 培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。教科书的几何部分,要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。 由于信息技术的发展与普及,直观实验**在教学中日益增加,本节课利用我们学校建立了电教教室,通过制作课件对于几何学的学习起到积极作用。

八年级勾股定理教学反思 3

  一、教学的成功体验

  《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行**思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动.

  二、信息技术与学科的整合

  在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多**教学,为学生创设了生动、直观的现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的***.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是

  静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flas***演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃.

八年级勾股定理教学反思 4

  我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。这4个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。

  第一课时的课堂教学中,我始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行**,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点.

  第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。教师只在学生遇到困难时,进行引导或**学生通过讨论来突破难点。为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.

  第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的**者、引导者、合作者。另外教会学生思维,培养学生多种能力。课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。

  第四课时我另外向学生介绍了勾股定理的证明方法:以赵爽的“弦图”为**,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为**,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为**,“无字证明”。

  总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《**怎样走最近》的类型题加入本教材。

八年级勾股定理教学反思 5

  根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:

  1.创设情境,提出猜想让学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫.同时,引导学生从特殊到一般提出猜想。

  2.证明猜想,得出新知。由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的方法证明问题的思想,突破定理证明这一难点,并适时出示课题。

  3.应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标.第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。

  4.归纳小结,形成体系让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等.帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。

  5.布置作业,课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展

八年级勾股定理教学反思 6

  在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后**演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,**提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

  在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生的想像力。

  最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。

八年级勾股定理教学反思 7

  新课程**要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的.基础。

  首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。

  一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。

  过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。

  情感态度与价值观:体会数学文化的价值,通过介绍*古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。

  二、优化数学教学内容的呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。

  1.2002年国际数学家大会在**举行的意义。

  2.电脑显示:ICM20xx会标。

  3. 会标设计与赵爽弦图。

  4. 赵爽弦图与《周髀算经》中的“商高问题”。

  (二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。

  1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。

  2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。

  3.让学生自己任画一个直角三角形,再次验证自己的发现,在此基础上得到直角三角形三边的关系。

  4.电脑演示:锐角三角形、钝角三角形三边的*方关系,从而进一步认识直角三角形三边的关系。

  5.通过几个练习,了解直角三角形三边关系的作用。

  (三)继续动手操作实践,思考探究,拼图验证猜想。

  1.学生动手用准备好的四个直角三角形拼弦图。

  2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。

  (四)拓展延伸,发挥作为千古第一定理的文化价值。

  1.简单介绍勾股定理的文化价值。

  2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。

  3.电脑演示:欣赏勾股树。

  4.推荐进一步课外学习的网址。

  5.与课头的“ICM20xx”在*举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。

  本节课开始我利用了导语中的在**召开的20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。同时出示勾股定理的图形,让学生猜想直角三角形三边之间的关系。然后利用正方形网格验证猜想的正确性,还利用教具在黑板上拼图,启发学生用面积法得出a2+ b2= c2在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后**演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师利用多种证法让学生参与勾股定理的探索过程,让学生自己感觉并最后体会到勾股定理的结论,使得这课的重难点轻易地突破,**提高教学效率,培养了学生的解决问题的能力和创新能力。

八年级勾股定理教学反思 8

  时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。

  记得那是期末的展示汇报课,(**说可能会有校外的教师来听课。)我当时很有压力,晚上也难以入睡。我选的是《勾股定理》一课。为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新**来打造我的这节课。当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。

  1、从生活出发的教学让学生感受到学习的快乐

  在“勾股定理”这节课中,一开始引入情景:

  **湖水清可鉴,荷花半尺出水面。

  忽来一阵狂风急,吹倒荷花水中偃。

  湖面之上不复见,入秋渔翁始发现。

  花离根二尺远,试问水深尺若干。

  知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。

  2、走进生活:

  以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求**爬的最短距离,这些都是勾股定理应用的典型例题。

  3、名题欣赏:

  首尾呼应,用“代数方法”解决“几何问题”。印度数学家婆什迦罗(1141—1225年)提出的“荷花问题”比我国的“引葭赴岸”问题晚了一千多年。“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。《九章算术》约成书于公元一世纪。该书的第九章,即勾股章,详细讨论了用勾股定理解决应用问题的方法。这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其**,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?” “荷花问题”的解法与“引葭赴岸”问题一样。它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。

  4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生***,活跃课堂气氛,拓宽学生思路,运用多**出示了一道“智慧爷爷”出的思考题:

  即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放**的情况下解决了该题,同时培养了学生之间的合作。

  5、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。

  这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新**,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。

八年级勾股定理教学反思 9

  对于“勾股定理的应用”的反思和小结有以下几个方面:

  1、课前准备不充分:

  基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。

  分析:由勾股定理结论:直角三角形中两直角边的*方和等于斜边的*方。

  其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的面积。但学生竟然不知道。其二是课件准备不充分,***一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。

  2、课堂上的语言应该简练。这是我上课的最大弱点,我不敢放手让学生去**思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去**思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的“放多少”是一门艺术,我要好好向老教师学习!

  3、鼓励学生的艺术。教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。

  4、启发学生的技巧有待提高。启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。

八年级勾股定理教学反思 10

  《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

  一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

  二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

  三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

  四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

  五是缺少方程思想和转化思想,使综合类试题痛失分数。

  六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

  针对上述问题,痛定思痛,感悟颇多:

  第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生**完成,并进行一定量的训练,才能实现教学的有效性。

  第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

  第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

  第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

  第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

  相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

八年级勾股定理教学反思 11

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位.

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成**思考、合作交流的学**惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生**的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 yyfangchan@163.com (举报时请带上具体的网址) 举报,一经查实,本站将立刻删除